N93-31032
uynclas
0176818

G3/19

(SGOAA)

GUIDE
nd Sciences

SPACE GENERIC

RCHITECTURE
ECHNICAL

MoDEL T
Engi neering =]

ONICS A
195 P

CR-188246)

(NASA-
OPEN AVI
REFERENCE
(Lockheed
co.)

National Aeronautics and NASA CR-188246
Space Administration

Lyndon B. Johnson Space Center
Houston, Texas 77058

SPACE GENERIC OPEN AVIONICS ARCHITECTURE
(SGOAA)
REFERENCE MODEL TECHNICAL GUIDE

April 1993

Richard B. Wra
John R. Stoval

(This revision supersedes LESC-30347, issued December 1992)

Prepared by:

Lockheed Engineering & Sciences Company
Houston, Texas

Job Order 60-911
Contract NAS 9-17900

for

FLIGHT DATA SYSTEMS DIVISION
JOHNSON SPACE CENTER

LESC-30347-A

SPACE GENERIC OPEN AVIONICS ARCHITECTURE
(SGOAA)
REFERENCE MODEL TECHNICAL GUIDE

April 1993

Richard B. WraY, Advanced Systems Engineering Specialist
John R. Stovall,

Advanced Systems Engineering Specialist

APPROVED BY:

QOJ)0,«&7

“G.L CI6uette'. Project IntegratidﬁbSpecialist D.M. Pruett, Manager, Advanced Programs
Flight Data Systems Deparfment Flight Data Systems Division

Prepared by:

Lockheed Engineering & Sciences Company
Houston, Texas

Job Order 60-911
Contract NAS 9-17900
for
FLIGHT DATA SYSTEMS DIVISION
JOHNSON SPACE CENTER

LESC-30347-A

DOCUMENT CHANGE RECORD

The following table summarizes the change activity associated with this document.

ISSUE AND CHANGE SUMMARY SECTION
DATE

m 1‘ - L aE8 BT B Tert S T

iii

PREFACE

This document has been produced by Mr. Richard B. Wray and Mr. John R. Stovall of
Lockheed Engineering and Sciences Company (LESC), the codevelopers of the avionics
architectures and standards represented in this document. The contributions of Mr. Ben
Doeckel of LESC who participated in early development of the concepts for the avionics
architectures and standards represented in this document is acknowledged. Special
acknowledgement is also given to Mr. Dave Pruett of the Johnson Space Center for his
support of the Advanced Architecture Analysis, assistance in the development of the
avionics architecture and constructive criticisms of the proposed standard. Major inputs for
Section 2.2 and Appendix B on Architecture Requirements were provided by Mr. Rich
Flanagan and Mr. Art Van Ausdal of the Boeing Defense and Space Group.

iv

CONTENTS

Section

1. INTRODUCTION ...ooeerreceereresnessescscassesssssssssasssssassonsssssssasssssssnsssssassansnssassasssscssssss

1.1 OBJIECTIVE......oiiiirrersnsssssnasesssesestosesestsessssssamssansnstastsssssssasasssssesssssasansas
1.2 PURPOSE.....coreererierereirerescssassssesssssssssesssssensansassestosssstasssstsssnnsnsssassssssssssasses

T3 SCOPE. ... ceoriicrereirsesseseseesesesisassersssssesessrassenssnasss sesststssstsssansssssasnsssnsanoneasassses

14 APPROAGCHccoemrinirineriniurssssssmessasasssssssssssnsasssssesensasssnsasesss

1.5 ORGANIZATION OF DOCUMENT.......c.cccoesssusenmserssrsrannssansnssnsassssncnnaces

2 SPACE GENERIC OPEN AVIONICS ARCHITECTURE REFERENCE

REQUIREMENTS AND MODELS.....coomiiiniininiinnrssnsssnesesistasisssssassssissanes

21 SPACE GENERIC OPEN AVIONICS ARCHITECTURE

BACKGROUND........ccommrerraerensrsssssscsess reeersuessasetnerteseresesenenenensatrasnsssenes

2.1.1 MODEL DEVELOPMENT PROCESS.......c.ococossirersecnsansasnsssuacasees

21.1.1 Development Backgroundoeeesessussescssssesnssarsssnnens
2.1.1.2 Architectural Principles Requiredccccoeueeuuineernenen

2.1.2 REFERENCE MODEL DEFINITIONS........ccoosuvssureunirmsenssnnrnsseenss

213 RELATED ARCHITECTURAL STANDARDS AND

REFERENCE MODELS FOR AVIONICS.......cccoooieimnninserannees

2.1.3.1 POSIX Open System Environment.........cooeuseeccuccncnes
21.3.2 OSI Model....ccccocvnnivcennneneas . rreeenressasssnresssess

22 SPACE GENERIC OPEN AVIONICS ARCHITECTUR

REQUIREMENTSooosireeesesssessssnsessssessasees vesenestassaresasreesiens

221 REQUIREMENTS OVERVIEW..

2211 Open Systems Requirements... resevsecessnsraaseoransane
2212 Lower Level Standard Selection..........ccceeeerececcrccicsnncas

222 ARCHITECTURE FEATURES......cccccoumtnsissssscrsseserssessassssennsonsanes

2221 Requirements Architecture.......cooemeimeininissenncnaccens

........... 2.1-11

Section

2222 Critical INtErfaces.........ccovvurrrenirecrencreisurenerssasasessssesseseseesssssssssenes 224
2223 Service Interfaces..........cceeveeeeerercrureroreanes ceesssessesanssasece 224
2224 Resource CONIOL.......coniiccnercnnerericcersasassessesssssesesssesesesenns 224
2225 Commonality ..., 225
2226 Interface Standardization...........cceuereermererseeresensrerernesonenceensannes 225
2227 Crew OQverrid rerererstsenasarsinenans cervseereesestsacstaanes 22-5
2228 Dependability Management..... teereenssee et sessaenens 2.2-6
2229 Data System Services seencusaasrsnssnensass 22-6
222.10 Growth and Spare g_ Yo T (OO 22-7
22211 MOQUIATILY «..overierriersieictierinisisecsiencsesecssssssssssnsnsssassossnsassarssens 22-7
22212 Service TIaNSPATENCY.....ccesirerrersirersemrssmasanseseassossssessssensesssssorses 227
22213 Technology TranSparency......... s eeecescorsesersesensens .22-7
22214 Interoperability..... . rerernsaenenenresrtenaereaes 22-7
22215 GOAIS...cuvireceircesitriceencseensen s ssassasetss s sssnaesesesssnsses s nns s smsnsan 22-7
223 EXTERNAL INTERFACES .2.2-10
2231 Ex 1In e Requi 101 1R 2.2-10
2232 SGOAA Development Interface Definition Objectives.....2.2-11
224 SGOAA DEVELOPMENT FUNCTIONAL REQUIREMENTS.......... 2213
2241 Process and Data Requirementsc.ccceceveeurereesrennerereennesens 22-14
2242 Performance and Quality Engineering Considerations.....2.2-18
SPACE GENERIC OPEN AVIONICS AR DETAILED
REQUIREMENTS DESCRIPTION........cccovcnecesssuessecrerermersrsasassasessasssesssesessonssenes 231
23.1 GENERIC SYSTEM ARCHITECTURE REQUIREMENTS
DESCRIPTION.....ocmeserenncsnsensasessmsssssssrrosssssssaneasssssossmsssassosssssessssssssosses 232
23.2 ARCHITECTURE INTERFACE MODEL REQUIREMENTS
DESCRIPTION.......covuirininiscncenmesensenscsessssssnsssasssssessssssessssssssnsssssssossonses 234

vi

Section Page
2321 Class 1 - Hardware-to-Hardware Direct Interfaces............... 234
2322 (Class 2 - Hardware-to-System Software Direct Interfaces...2.3-15
2323 (Class 3 - System Software-to-Software (Local) Direct
Interfaces....... reevessseessessseassessnsesmesetessesensesasasnntensessarsnssnsentas 2.3-17
2.3.24 Class 4 - System Software-to-System Software Logical
INEETEACES woeeeeeeeeeeceeceossersssnsossseressrressenssesssnsssssnasassaresans sossssnsssses 2.3-21
2325 (Class 5 - System Software-to-Applications Software
(Local) Direct INterfaces........coruereeernnisrenesmssssesescenssssnoncsssensnnnee 2324
2326 Class 6 - Applications Software-to-Applications Software
Logical INLETfACeSvuerersernesensenseosscnsesscsnrssossssssessanisassnsensansanes 2.3-27
24 SGOAA RELATIONSHIPS TO POSIX......cceceererenccrnsensensssessassanssssessanssessansasaaseassas 241
241 POSIX OVERVIEWcocvnveecriresessnsssssssessasesssseessssssrssssosssssessessesssssssassass 241
24.1.1 Application Platform......ccceiinninincnniiensnessiisienensisesneenes 24-1
2412 Application Program Interface (APD........cccccocrnvumrvenreccnnnnannnn 24-2
2413 External ENVIITONMENLtccccccoorimisrserenmssesnsieressessessssssssassesesnnsess 245
241.4 External Environment Interface (EEDcccccocnmnnrcvesnicnnene 245
242 SGOAA INTERFACE CLASS RELATIONSHIPS TO POSIX............. 247
2421 Class 1 Hardware-to-Hardware Interfaces (DIRECT)........... 247
2422 (Class 2 Hardware-to-System Software
Interface (DIRECT)......ccccneeemsussisssusessmsisassssesesnssasnssssesssssassnsssassns 24-8
2423 Class 3 System Software-to-Software (LLocal DIRECT)........ 249
2424 Class 4 System Software-to-System Software Interfaces
TCALD).c. oo eeeemeeemsceesssssssossorsssaserssessisnsssossessasss sonsrsansasasssessssanes 249
2425 System Software-to-Application Software Class
(DIRECT) ..oeecreerrerseenessescssasassssssssssssassssssnsasssssssssasassssssssssasassnss 2.4-10
2426 Class 6 Application Software-to-Application Software
(LOGICAL).....covmreererararessssessesassssasasasssscsessssssoressassssssessessassasssasases 2410

vii

Section

3.

Page
THE SPACE GENERIC OPEN AVIONICS ARCHITECTURE APPLIED................ 311
31 POTENTIAL SPACE GENERIC AVIONICS FUNCTIONS.........cccoeevvnrunnuen. 3.1-2
32 DATA AND CONTROL FLOW DIAGRAM CONVENTIONS...........cccccor... 32-1
33 FUNCTIONAL ARCHITECTURES.........cccecceenrerrcnscenens cerersessaesnnaens 331
34 KEY INTEGRATING SOFTWARE YSTEM ARCHITECTURES........ 341
3.4.1 SPACE DATA SYSTEM SERVICES ARCHITECTURE....................... 341
3.41.1 SDSS Control Modes........ccvvemeeeeseemcnssesemsnesnessssesesssssasennes 344
3.412 Standard Data Services Manager..........ccocceceeveeveeucvevenserenernac 345
3.41.3 Network Services Manager..........cuueecercesssssssscssssseasesesseseas 347

3414 Data System Mana reremmesessssessenensneeens 3.4-11

3.41.5 Operating SYSteM......cccevercesnseussmsinsesieascacsensessssssssnnsssssssasassesens 3.415

3.4.1.6 Data Base Manager...........ccccoveremsnacnsencssenee .3.417

3.42 SPACE OPERATIONS CONTROL SUBSYSTEM.........coceeuemrvruncusccennee 3419

3.421 Vehicle Controller reasuseetsnsassnssssasasanranas 3.4-19

3.422 Command CONtIOlEr.........cccoumminiveruceciracernnessesssesssanessscernsenens 3.421

3.423 Systems CONTOLIET........ccouuiumrimiiriuscsinsearircisisnsssinsnecnasacssseaens 3.4-21

3424 Communications & Tracking Control........cccoecerevcrerinscanuaes 3423

3.425 Crew Manager ... miemsinsinsssssnasessssesssasssossassssssssssssssnes 3423

3.42.6 Integrated Logistics CONtrol........cccccoccvcvemreenncereccrennonsenrearuenens 3423

3.4.27 Payload and Science Operations Control.........cc.cccceeeuecuccnce. 3424

Section Page

35 SPACE DATA SYSTEM ARCHITECTURE APPLICATION......ccccecsemcreusinses 351
3.5.1 SPACE STATION APPLICATIONccomurimrrcesrnnencssstscssssnssenmcnsnsnnans 351
3,52 COMMON LUNAR LANDER APPLICATION ...t 353
3.5.21 Space Operations Control Subsystem Requirements
TRIIOTING......covvrucrnririrsersenssrssnsssnssssassrssssssessstassssisssssssscunssssssasens 353
3522 Space Data System Services Requirements Tailoring........ 355
3.5.23 Space Data System Hardware Requirements Tailoring....3.5-5
3.52.4 GAP Internal Architecture Requirements Tailoring.......... 357
3.5.25 Lessons Learmned.........cveierarnsestssseserinesessssssscnesnscscssssssnsnsens 3.59
4. CONCLUSION AND RECOMMENDATIONS........ccoeviismermmsasioonsessoncsssrossssscssasaseses 41
41 CONCLUSIONScoeccireerreerssonsassssersesssesessssmsssssessssssassstossssssssssssssssssssssssmsssesssssssss 41
42 RECOMMENDATIONS eetereruessaatesa s s seses R aRe SRR SRR S snR et sR e R R SR SRR s san e 42
APPENDICES Page
A SGOAA DEFINITIONS.ccoueurenrenensiserensessmmsesisensssssesssssssnsssssssssssssnstssssssssssessasssessrses A-1
B ARCHITECTURE SPECIFICATION TABLES.......oerienennensenntseseenannseeessssssisssnans B-1
C ARCHITECTURE REVIEW COMMENTS AND RESPONSES.........ccoonscuesiucnecns C1
D. LIST OF REFERENCES.........conreerisrernreens detesra s sessassestsen st st eR s sa s R bR R sn s e D1

ix

Table Page -
2-1 Critical Condition CAteZOTIESc.corrcrrrierseesronerrseraesrasserarsaseesssnnssessrssssessssssnsssssssssens 2.2-9
2-2 Partial List of Related Standards............ccceoeeverneectinecnnieennieenrenreresesneeseeesssessesees 2.2-11
2-3 Message Transfer SErvice Grade.........cccueivvrirnreirersenernensnenesseesssesssneessessssseessssssossens 2.2-14
2-4 Message Transfer Service Grade CharaCteristicsc.ccvveerrivcrrererrrerersneecssneeneneesseeeens 2.2-14
2-5 Capacity Margins for GIOWLhL..........ccioceeiriieririciieecneinanesseesseressesssnsssssossssenssssesssneas 2.2-18
2-6 Reliability REQUITCIMENLS.........ccccoviiirriorcenennrrereesisnceenrinseestsissnsssssssssssssesssssessssssssnas 2.2-20
2-7 Availability REQUITCINENLS........c..cccovuiirsaeriensennicneessreirotesserestasessressesssssesssassesssssssessss 2.2-21
2-8 Architectural INterface ClASSESccccevvveiriiiiisneissntiesnresinssesseesssreessneersesssssessssreessnene 2.3-5
2-9 SGOAA Relationships t0 POSIX..........cciiiiiieirmreeeeeiariernieeenioteereeessessesesssesesssosessssnsenees 2.4-7
B-1 SATWG Avionics Architecture Vehicle Study Class Definition.............cccceceveerevrenvenns B-3
B-2 SATWG FDS Architecture Mission Set Requirements.... cesrsessessnasensossnsB-4
B-3 SATWG FDS Architecture Service and Interface Requirements............cccccceeeereecrnnnnnne. B-6
B-4 SensOr INLEITACE........ccccouiiriicnciinrinreeeeessessssnesassssasssssersneseessassasessasssssesssessanasassasersaen B-8 -
B-5 Effector INTErfaces...........cccoviiiiirereisensncsiuestsruosionsestsinsessessosesssssssassssssesssssssnssnarsae B-8
B-6 Bit Error Rate CharaCteriStiCscecuruerisricnsnsnsrisssesssssssenmsnssnsaesserassssnsssssnessersasssarsesaes B-8
B-7 Priority Message Transfer Latency (Maximum Time)...........ccccceervvmeereervnreereererresssnnne B-9
B-8 Processing Throughput CapPaCILYccccereereerieiiireneieneirerrresreeeessseeessssessesseseonesssssessons B-9
B-9 Network Throughput Capacily.......c.ccceeecciereecrrerecrrerrseenseeciersresesssrsssessssseeesssssssssssssane B-9
B-10 Allocated MEMOTY SPACE.......cccciecrierrerinaressransssresersseesssecssessnesssssssssessessssassssssnnesssneses B-10
B-11 Timing REQUITEMENLSccoiiuiiiiiiiienieescteeereaessareesraceesssassaesaeerssssssasensesssssesssnssssssssssnses B-10

TABLES

FIGURES

Figure Page
1-1 Mission and Operational Requirements for all VehicCles.......coooeurnrenecscccscsnscninnience. 1-6
2-1 Architecture Reference Model RelationShips.....cccoeeesveesiesiniieninniinnenscetissiieasineesneenes 2.1-2
2-2 Architecture Reference Model INTEIfaCescoeoveeerenmiiiisntiiiiennnnneiiirestisentisanaceseennees 2.1-2
2-3 One View of the Space Generic Architecture with the assumed processing boundary ...2.1-3
2.4 Potential Process Partitioning included by the Space Generic Architecture................... 2.1-8
2.5 Hardware Architecture Assumed for the Space Generic AVIOMICScouruermsrerenensanenees 2.1-10
2-6 Open System Environment Model of Applications and Interfaces........cocveeverrrnennenennaes 2.1-11
2-7 SGOAA Functional INIErfaces.......cccceerriirerrrerrsrnecossnessescuessssntossossesosanasssstssssnsosssssesns 2.2-3
2-8 SGOAA Functional REQUITEMENLS.....ccveerrrarrenerseecsssesstississesssniassanstsssosesssssanssnessnsnssasns 2.2-9
2-9 Logical System Requirements Flowdown to Direct Design Requirementsccoceueene 2.3-1
2-10 System Architecture MOGEL.......ccocoumemruniriieninmimmimstsssesssisiitiiinctssnsss st see s casasns e 2.3-3
2.11 Architecture Interface Model Interface Class Relationshipscccoovveeeiimniiincicenenene. 2.3-6
2-12 Class 1 Hardware to Hardware Direct INTErfacescccccverucisseissnironinnenanecserisatissanecnnans 2.3-8
2-13 GAP Hardware to Hardware Interface Standards.........cccccoeiiinerinsnncencecioncnisciiccnneene 2.3-10
2-14 Generic Processing External Hardware Architecture and Interfaces for a Space

Generic Open Avionics ATCHItECIUTE......cccceuetecrismnesariensnsnssesenesscartsostssssensasasassnaeee 2.3-11
2-15 POSIX Open System Environment Interfaces Applied to a Station Example of a

Standard Hardware ATCRILECIUTEcciceeeteeessrsrnaesssrnnsassesssneresssessstaesssssrsscsssssonasonsseses 2.3-13
2-16 Generic Processing Internal Hardware Architecture Model..........oevernemimecsrccncerasicacnees 2.3-16
2-17 Class 2 Hardware-t0-System SOftware DIreCL.........ccceovriurrimnineiansnnanessnecniencssisesssnsnsnne 2.3-18
2-18 GAP to Operating System Hardware DIVETSccoceueumenimeiescsscnisnstiiniiesissinesneens 2.3-19
2-19 Class 3 System Software-to-Software Direct INterfacescocevruerersucscncicncnicneccnsnnees 2.3-20
2-20 Operating System INEIFACEScoeeereesrerisisimsmementsnanisssesnesstsetensssttsssnst st as s secnees 2.3-22
2-21 Class 4 System Software-to-System Software Logical INterfaces........cccocovueesercscusisnnne 2.3-23
222 SDSS Services to Other or REMOLE SEIVICES.....occvirueccissinseisrnsensnseniasisnesaecarissacssnisnianees 2.3-25
2-23 Class 5 System Software-to-Applications Software Direct Interfaces.....ccccveeecenrecesnnnns 2.3-26
2-24 Services t0 AppPLications INTEIfACES......ccveeeriiserriintiennetenn ettt sttt e 2.3-28

Figure Page

2-25
2-26
3-1
3-2
3-3
3-4
3-5
3-6
3-7
3-8
3-9
3-10
3-11
3-12
3-13
3-14
3-15
3-16
3-17
3-18
3-19
3-20
3-21
3-22
3-23
3-24

Class 6 Applications Software-to-Applications Software Logical Interfaces.................. 2.3-29
Class 6 System A Software-to-System B Software Logical Interfaces............................ 2.3-31
Space Generic Avionics Potential Functions Checklist...............coeeevevveeemeeeeeeenonnn. 3.1-4
Space Generic Avionics Core Functional ArchiteCture.............oeevveveveveveveeoeeoeoooo 3.3-1
Distributed Generic Space Data System Interface Diagram..............ccoceovvvrreerernnn.. 3.34
Space Data SyStem SEIVICESc.cueerierrereereerreerereentesreneneseseeneeenssssssssssssssesesssessssssns 3.4-3
Space Data System Services Provides Multiple Control Modes..............ooooovoeeveoooeenn, 3.4-4
Standard Data SEIvIiCes MAaNAETc.couevueeviieresereeeeceeeoseesesneessssessssssssesesssssssmmsnsns 3.4-6
Network Services MANAGET............ccouvreeeereererneterieeeeessoeeesseessssesssessssssesssessesssssssenns 3.4-8
Stack Software and Hardware Partitioning.............cocecoevevemerevereeeemeseeeeseseooeeooeooo 3.4-9
Network Service CONITOLICT...........ccceveerreerenrerierrerceeraeenreesesneoseeeeraeesessessessessssnessssssssa 3.4-10
Data SyStem Manager...........cc.coccemeererrreerrecreereresseeestssssseessseeessssesssesssssssesssnsssnssesssnn. 3.4-12
Operating SYSIEImM SEIVICES........cocervrriererrrersrsesssserssesiserereoseaseseeesessssesssesesssssssssssssssnsns 3.4-15
Data Base MANAGET...........ccccoveiemeerrreerenessesesessesessessessessessssseessssnessesssssesesssensnsssssses 34-18
Space Operations CONtrol SUBSYSIEMS..........cccucuereereceeerirreeneeeeneeeeensesessssesesssssessonsesssenes 3.4-20
Subsystem Coordination through Vehicle CODITOLeeeveeeeereeeeerereeeee oo 3.4-21
Needed Functions in Operations Command CONLIOL..............c.oeeeveeememeeeoeeenenesmseeens 3.4-22
Systems Control Optimizes FUNCHONALLYc.cocreerrerereeeemeerenereeressseenssessssessssssessene 3.4-23
Integrated Logistics Control Supplies and Fixes Broken Spacecraft.............................. 3.4-24
Payload and Science Operations CONLIOL..........ccceveeteeeerenesermeessssessonesssensssssssssesssssssens 3.4-26
Generic Avionics Architecture vs. Space Station DeSign............ccccvveuevveeereeemerermnnnnn 3.5-2
Space Operations Control Subsystem Requirements Tailoring................cccceerveunnn..... 3.54
Space Data System Services Requirements Tailoring............cccovveeeemeereveeeeeeeoeeennns 3.5-6
Space Data System Hardware Requirements Tailoring........ rereessreesssessnnsssanaesaneans 3.5-7
GAP Internal Architecture Hardware Requirements Tailoring....................ooevevereee...... 3.5-8
Common Lunar Lander Tailored ArChiteCture...........ce.evvueuemerueeveeeeseeeseeeeesenesssseenns 3.5-10

xii

ACRONYMS

AFE Aeroassist Flight Experiment

AIM Architecture Interface Model

ANSI American National Standards Institute
AP Application Platform

API Applications Program Interface

AS Application Software

BIT Built-In-Test

BITE Built-In Test Equipment

C&T Communicaitons and Tracking

CIL Common Lunar Lander

D&C Displays and Controls

DA Data Acquisition

DD Data Distribution

DMS Data Management System

DSM Data System Manager

ECCV Earth Crew Capture Vehicle

EE End Environment

EEI External Environment Interface

FP Effector Processing

EP Embedded Processor

EVA Extra Vehicular Activity

FB Future Bus

FDDI Fiber Distributed Data Interface

FDIR Fault Detection, Isolation and Control
FDSD Flight Data Systems Division

GAP General Avionics Processors

GN&C Guidance, Navigation and Control
H&S Health and Status

I/O Input/Output

IEC International Electrotechnical Commission
IEEE Institute of Electrical and Electronic Engineers
P Internet Protocol

ISA Instruction Set Architecture

ISO International Standards Organization

IVA Intra Vehicular Activity

JsC Johnson Space Center

LESC Lockheed Engineering & Sciences Company
MCMT Mean Corrective Maintenance Time
MDM Multiplex-DeMultiplex

MSU Mass Storage Unit

MTBCF Mean Time Between Critical Failure
MTBF Mean Time Between Failure

NASA National Aeronautics and Space Administration
NC Non-Critical

NM Network Manager

NSC Network Service Controller

NSM Network Services Manager

NSMID NSM Interface Definition

OO0A Object Oriented Analysis

o5 Operating System

OSE Open System Environment

OsI Open System Interconnect

POSIX Portable Operating System Interface

RODB Runtime Object Data Bases

ROM Remote Operations Manager

RTE Run Time Environment

SAAP Space Avionics Architecture Panel

SAE Society of Automative Engineers

SAP Special Avionics Processor

SATWG Strategic Avionics Technology Working Groups
SC Safetu Critical

SDP Standard Data Processor

SDSS Space Data System Services

SGA Space Generic Avionics

SGOAA Space Generic Open Avionics Architecture
SOCS Space Operations Control Subsystem

TBD To Be Determined

TCP Transmission Control Protocol

xiv

1. INTRODUCTION

As the United States of America ventures into a new era of Space Exploration with the
return to the Moon and then on to Mars and beyond with both manned and unmanned
spacecraft, more effective approaches to developing these new spacecraft must be found.
These approaches must address cost, schedule and technical performance.

Previous space programs have usually relied upon one major space vehicle being in
development or flight at a time. In the future, multiple vehicles such as the Artemis
Common Lunar Lander, Manned Lunar Lander, National AeroSpace Plane, Unmanned
Mars Lander and even a manned Mars Lander will be in various stages of the development
life cycle simultaneously. In order to be able to afford the development of these vehicles,
new and evolutionary approaches to the design of these vehicles must be developed.
Avionics systems are a prime candidate for the development of evolutionary approaches as
there is much commonality between the functions that must be provided for all space
vehicles.

This report presents a full description of the Space Generic Open Avionics Architecture
(SGOAA) established in [WRA93]. The SGOAA consists of a generic system architecture for
the entities in spacecraft avionics, a generic processing architecture and a six class model of
interfaces in a hardware/software system. The purpose of the SGOAA is to provide an
umbrella set of requirements for applying the generic architecture interface model to the
design of specific avionics hardware/software systems. The SGOAA defines a generic set of
system interface points to facilitate identification of critical interfaces and establishes the
requirements for applying appropriate low level detailed implementation standards to
those interfaces points. The generic core avionics system and processing architecture
models provided herein are robustly tailorable to specific system applications and provide a
platform upon which the interface model is to be applied.

The SGOAA is intended to be used by both avionics system designers and avionics system
implementors in the development of open systems architectures for avionics. The system
under design shall be expressed in the context of the System Architecture and Generic
Processing Architecture as described in Sections 2.3.1 and 2.3.2 respectively. The
Architecture Interface Model shall be directly applied to identify the specific interfaces
requiring application of lower level standards. The selection of specific lower level

1-1

standards is dependent upon unique system requirements, but shall be conducted in
accordance with the guidelines described in Section 2.2.1.2.

An open systems architecture can provide the following benefits to future space programs:

¢ Provide the basis for establishing a set of specifications, standards and procedures
that will become common to all systems used in simultaneously operational
missions, e.g., to simplify interfaces between multiple vehicles (such as the
shuttle and station) when performing a joint mission such as docking.

¢ Ensure that future avionics systems can be upgraded and maintained with
minimal redesign impact to the existing avionics system by establishing the
interfaces required to enable modular replacement of hardware and software.

¢ Promote availability of multiple sources of needed avionics software and
hardware by defining standard interfaces.

¢ Provide a pool of hardware and software modules for multiple program re-use by
defining standard interfaces and promoting hardware and software reuse and
commonality.

¢ Insure access to the architecture and its design documentation for any vendor or
agency desiring to propose new uses and applications, and to facilitate
competition to contain cost growth.

An Advanced Architecture Analysis was conducted by Lockheed Engineering & Sciences
Company (LESC) for the National Aeronautics and Space Administration (NASA) Johnson
Space Center (JSC) to develop a generic methodology for defining avionics architecture that
can be tailored to match the varying requirements of all space vehicles without requiring
the system engineering team for each new vehicle to reinvent the requirements analysis
and design process. The methodology is presented in reference [WRA91].

An Architecture Requirements Study was conducted for JSC by Boeing Defense and Space
Group [BOE91] to develop the requirements for generic software and hardware architecture
for space missions. The requirements developed drive the architecture and are
incorporated in this document. [BOE91] also presented specific performance parameters for
many of these requirements. The performance parameters are considered design

requirements and as such are outside the scope of the SGOAA, but are summarized in

Appendix B for reference.

SATWG system design goals and objectives were considered in establishing the following
SGOAA design goals:
(1) Minimize life-cycle costs

(2) Provide a robust design
(3) Provide technology transparency

The SGOAA presented in this document is a product of the ongoing Advanced Architecture
Analysis task for JSC. The SGOAA consists to date of the following models:

e A Generic System Architecture Model
e A Six Class Architecture Interface Model
A Generic Processing External Hardware Architecture Model

« A Generic Processing Internal Hardware Architecture Model

The SGOAA was developed by first designing the following two functional avionics
architectures as described in Section 2.1:
+ Space Data System Services (SDSS) Subsystem Architecture

« Space Operations Control Subsystem (SOCS) Architecture

These are the two key integrating subsystems of the generic system architecture. These
architecture are reuse architecture and can be tailored to match the varying requirements of
multiple space vehicles in accordance with the goal of the Strategic Avionics Technology
Working Groups (SATWG) Space Avionics Architecture Panel (SAAP) to develop families
of avionics systems suitable for multiple program use.

The SGOAA and the two functional subsystem architecture presented in this report satisfy
the Portable Operating System Interface for Computer Environments (POSIX) "Avionics
Software Open System Environment Reference Model" in reference [POSIX91] as discussed
in Section 2.1.3.1. The relationships of the SGOAA to the OSI model are discussed in
paragraph 2.1.3.2.

1.1 OBJECTIVE

A standard or set of standards is needed for advanced architectures in future space
programs. The LESC Advanced Architecture Analysis is being performed under the
auspices of D. Pruett, Manager for Advanced Programs for the NASA JSC, Flight Data
Systems Division (FDSD). Its objective is to develop a family of architectures for space
avionics systems that can be used in any future space vehicle or facility. The information in
this document is intended to support the SAAP goal of minimizing life cycle costs,
including sustaining engineering costs, of space avionics hardware and software.

1.2 PURPOSE

This document is a technical guide to the proposed SGOAA Standard, and has been
produced by LESC. The proposed SGOAA Standard is contained in a separate document
[WRA93). This technical guide presents the results to date of the Advanced Architecture
Analysis task to assist the SATWG and SAAP with strategic planning for avionics
development in future space programs. All of the work presented has been done at JSC. It
is hoped that this report will stimulate participation and contributions from the other
NASA centers or SATWG members. Feedback and response from the readers are solicited
and should be directed to D. Pruett, NASA Johnson Space Center, EK11, Houston, TX 77058;
NASAMAIL: dpruett; INTERNET: dpruett@®asd1.jsc.nasa.gov; or to R. Wray or J. Stovall,
LESC, 2400 NASA Road 1, Mail Code C18, Houston, TX 77058. Future revisions of this
document will be published as the study task progresses.

1.3 SCOPE

The results presented here are the third release of the results of a continuing effort by JSC
and LESC to develop an overall generic architecture for avionics, which can be applied to
the development of all future space mission avionics systems.

1.4 APPROACH

The approach taken by this study team was to gather data on existing space programs (Space
Shuttle and Space Station) in order to develop a comprehensive understanding of the
functions and services that space avionics systems must provide in order to develop an
architecture that would not be a "blue sky" approach, but would be based on reality.

14

The architecture development effort also monitored efforts by the SATWG and its
contractors to build generic, standard or open architecture. Of special note was the
incorporation of the avionics software Open System Environment Reference Model, as
presented in reference [POSIX91], into this architecture.

The main source of the underlying requirements for the SGOAA (outside of shuttle and
station documentation) were References [GD90A] and [BOE91] from the SATWG. In
particular, the driving requirement was for an open architecture allowing multi-vendor
sources for components, interchangeable and interoperable elements with reduced
complexity and cost and common elements. This led to the approach of using common
space applications software relying on common data system services. The requirement for a
robust modular system led to the need to avoid preconceptions on partitioning functions
between subsystems, in order to create a modular structure which facilitates hardware and
software reuse on multiple programs/missions and modular upgrades. Upgrades may
occur due to technology insertion, maintenance actions or changing mission requirements.
The requirement to support technology upgrades led to a structure which isolated specific
technologies from requirements implementation to the extent possible.

As shown in Figure 1-1, a starting requirement for the architecture development was that it
should be adaptable to all future space missions including:
« Surface-to-orbit missions to reach low Earth orbit, Lunar orbit or Mars orbit from the

local planetary surface.

 Docking and berthing operations between adjacent space platforms such as shuttles
arriving at the space station, heavy lift vehicles linking with orbiting vehicles, Lunar
ascent vehicles mating with their orbiting transfer vehicles, etc.

» Orbit station keeping operations by orbiting platforms maintaining stable orbits
around a planetary body, such as the space station in Earth orbit, the Lunar transfer
vehicle on Moon orbit, or the Mars space station in Mars orbit.

« Orbit-to-orbit transfers, which may be from low to high Earth orbit, from Earth to the
Moon, or from Earth (or another planet) into deep space.

 Orbit-to-surface missions to land on the Earth, Moon or Mars from an orbiting or
arriving space vehicle.

3

/

SIOIYIA [1¢ 10j sjuswdxmbay _uccw*awwmo pue uoissy [-1 231y

suojeiedp (1ea0Y) ed28jing ol1GON SN
suojisiedQ (eseg |jvuleju]) edw)ing pexid sd
eoBINg-0)-)iq10 8-0

Hqi0-0-3q940 ©0-0

Bujdee) uopmg HQI0 NSO

Bujyyieg ¥ ‘Bujyo0Q ‘snoAzepued @gay
HGq40-01-028NS - . (4GI0 Jeuvid MoT) XSO

1-6

« Fixed surface operations in a fixed base such as on the Moon base or Mars base,
where such a base may be performing permanently manned complex operations or
just temporarily manned exploration operations.

« Mobile surface operations in rover or similar vehicles moving on the planet surface.

The SGOAA incorporates both hardware and software into one architecture. Since all space
flight data systems are heavily dependent upon software, this was a primary consideration
in ensuring effective software requirements and effective software-to-software and
software-to-hardware interface definition.

1.5 QRGANIZATION OF DOCUMENT

Section 2 describes the SGOAA background requirements (based on work by Boeing in
reference [BOE91)]), and the SGOAA itself, including the Generic System Architecture Model
in paragraph 2.3.1, the Architecture Interface Model in paragraph 2.3.2 and the Generic
Processing Hardware Architecture Model in paragraphs 2.3.2.1.1, 2.3.2.1.2 and 23.2.1.3..
Section 3 discusses development of the detailed Space Generic Avionics functional
architectures (SDSS and SOCS). It also describes the results in applying the generic models
to two space programs: the Space Station and the Common Lunar Lander. Section 4
discusses the conclusions reached to the present and the recommendations for continuing
development.

2. SPACE GENERIC OPEN AVIONICS ARCHITECTURE REFERENCE
REQUIREMENTS AND MODELS

Standards are needed in the development of generic open avionics architecture, as
previously noted. But standards without a reference model are very difficult to apply, and
hence of limited utility. A reference model is needed to show how to apply the standards,
to check if the application is complete and consistent, and to identify the effort remaining
for completion of an application. The reference model provides the structure on which the
standard is built, and from which applications using the structure can be developed. Section
2.1 provides the background, processes used and ground rules for developing the model.
Section 2.2 defines the architecture requirements. The reference models are described in
Section 2.3: The SGOAA Generic System Architecture Model in Section 2.3.1, the
Architecture Interface Model (AIM) in Section 2.3.2, the Hardware Interface Architecture
Model in Section 2.3.2.1.1, the Generic Processing External Hardware Architecture Model in
Section 2.3.2.1.2, and the Generic Processing Internal Hardware Architecture Model in
Section 2.3.2.1.3. Detailed relationships between the POSIX and SGOAA models are
described in Section 2.4. Architecture applications of the reference model are described in
Section 3.

The POSIX Open System Environment (OSE) Reference Model is the basis for incorporating
application software portability and interoperability into the five models that comprise the
SGOAA . The POSIX Model can be related to the OSI Model and the SGOAA Interface
Model as shown in Figure 2-1. The OSE Model communications links are defined in detail
by the Open System Interconnect (OSI) Model for peer-to-peer communications. The OSE
Model interface classes are defined in detail by the proposed SGOAA Interface Model. Model
relationships are discussed in more detail in Section 2.1.3.

The application of the SGOAA classes to the POSIX OSE model entities and interfaces is
shown in Figure 2-2.

The reference model must show how independence is achieved between interface classes in
order to treat software in each interface class as a black box with standardized interface
specifications. Six interface classes have been developed to achieve independence between
each class, to distinguish between logical and physical implementation issues and to
separate hardware and software issues. These classes also facilitate the partitioning of
software applications which serve to satisfy user requirements and software services which
serve to satisfy implementation design requirements.

211

APPLICATION SOFTWARE

Use Comminfo system
Services

APPLICATION
PROGRAM

INTERFACE

¥
H-+HT
EEREEERN

APPLICATION PLATFORM - 1.

EXTERNAL
ENVIRONME
INTERFACE

Applications Software-to-Applications Software Logical Data
Transfers

System Software-to-Applications Software Direct interfaces
Sysem Software-to-System Software Logical Data Tranefers
System Software-to-Softwere (Local) Direct interfaces
Hardware-to-System Software Direct interfaces
Hardware-to-Hardware Direct interfaces

- N am

(SGOAA Classes 6)+

APPLICATION User Comm info System

PROGRAM (SG S80S Services
INTERFACE ~% OAA Cia: 3&3)
" AP ICATE (SGOAA Cilass 4)

EXTERNAL User Comm Info (SGOAA Class 1) User Comm Info

INTERFACE

6 Applications Software-to-Applications Software Logical System Software-to-Software Direct
5 System Software-to-Applications Software Direct 2 Hardware-to-System Software Direct
4 Systsm Software-to-System Software Logical 1 Hardware-to-Hardware Direct

Space Generic Open Avionies Archilecture (SGOAA) T

Figure 2-2. Architecture Reference Model Interfaces

212

2.1 SPACE GENERIC OPEN AVIONICS ARCHITECTURE BACKGROUND

A Space Generic Avionics (SGA) Core Functional Architecture was developed as the basis
for developing the SGOAA and is shown in Figure 2-3. For this development, an avionics
definition was assumed such that the control subsystems for each of the more traditional
subsystems (such as Guidance, Navigation and Control (GNC) or Communications and
Tracking (C&T)) were within the avionics boundary while the hardware sensors and
effectors were outside the avionics boundary to facilitate boundary definition with its
attendant conditions and to enable a stronger focus on architecture development.

A key study focus was to define the architecture interface requirements for the functional
services needed to enable applications subsystems to operate effectively, i.e., to define the
support avionics architectural elements. These are shown by the darkened lines on the
operations control application and the data system services bubbles and interfaces in Figure
2-3. This focus provided not only an architectural target, but also some value-added
avionics functional definition for operations control and data systems services. (This
diagram is not intended to suggest that these are the only interfaces of concern in a space
avionics system, nor that the subsystems revolve around the operations control subsystem

as a central point of control.)

Guidance
Navigation &
Control
Hardware

Subsys

Elec Powe
Control
Subsys

Power
Hardware
Subsys

Propulsio
Hardware
Subsys

CaT
Control
Subsys

Environ
& Life Spt
Hardware

ELS
Control

Subsys
Operations
Control Comm
Hardware

< Subsystem
Science) Oporatlons '
Control u

Payload Subs
Subsys

Subsys

Spnco
Dm Systorn

Space Generic Aviomcs Core

Tracking
Hardware

Primar
Y D lglul Flig Subsys

Avionics Lnuneh Suppo
Support Interface Subsy Instrumentation
Avionics Subsys

Not All interfaces Shown

Fxgure 2-3. One View of the Space Generic Architecture with the assumed processing
boundary

213

Development of the SGA Core functional architecture models are described in the
following paragraphs.

2.1.1 MODEL DEVELOPMENT PROCESS

The architectural model for the SGA core architecture was based on the need to provide a
reference model which incorporated both hardware and software architectural elements.
This architecture is not a completed product, rather it is a living architecture standard which can
continue to grow as more people support it and more ideas are added to its structure.

2.1.1.1 Development Background

The SGA core architecture is a space-function oriented architecture which stresses the
operational needs, the applications required to satisfy those needs, the applications'
requirements for services to enable them to operate, and the allocation of applications and
services to hardware and software. It treats hardware and software as secondary to the
operational and services aspect of a space avionics system.

The identification of functions in the SGA core architecture provides an appearance that the
SGA core architecture is a software architecture; however, it is intended to represent higher
level features comprising both hardware and software. Since all future space data systems
will be so heavily dependent on software, this consideration was a primary driver to insure
effective software requirements, and especially effective software-to-software and software-
to-hardware interface definition, as described later in Section 2.3.2.

2.1.1.2 Architectural Principles Required
Some of the key principles required of an architecture to be effective in future space systems

are:

abstraction
information hiding
inheritance
modularity
robustness
extensibility

These principles were used in the development of the SGOAA, and their definitions are
contained in Appendix A.

214

2.1.1.3 Architecture Assumptions and Ground Rules

Development of this architecture was based on use of computer aided systems engineering
tools, as described in [WRA91]. Architecture analysis needs automated tool support. The
tools need to provide basic structured analysis capabilities, centered on an integrated data
repository. A goal in picking automated tools should be the quality of their support in
enabling this methodology to be implemented. A selection factor should be the accessibility
of their data repository to other tools so that data from one tool can be extracted and passed
to another tool; preferably by using open standards for the data repository structure. No
weight should be given to a tool claiming to be capable of performing all phases of
automated development, since such a claim is far beyond the state-of-the-art in present
tools, and may not be desirable anyway. It seems likely that the tools are secondary to the
quality of the analysts in performing architecture analysis; if so, then the tools should be
selected to enhance the abilities of individual analysts.

The state-of-the-art, analytical techniques to be used require training to gain understanding
of static structured analysis, interface analysis, information modeling, object oriented
analysis, control state analysis, timeline analysis, performance analysis, dynamic system
modeling, and others used in architectural analysis.

Another key finding is that architectural definition be part of a concurrent engineering
approach, requiring the integrated efforts of engineers with experience in several different
disciplines, from requirements to design, from hardware to software, and from operation to
supportability. Development of an effective architectural model for any specific application
or system needs iteration between the concerns of each specialty to insure that the resulting
model is responsive to all discipline concerns. Effective techniques to enable multiple
disciplines to efficiently interact need to be developed.

Development interface capabilities are needed. Much of the development of requirements
for complex space systems is taking place at geographically disbursed contractor sites; these
distributed requirements need to be capable of being coordinated on a continuous basis as
they are developed. A capability is needed to acquire working level requirements (in
process) from these sites, test them against each other and a larger model of the system, and
to feed back weaknesses and strengths to the developers of individual requirements sets.
This is necessary to avoid waiting too long before erroneous, deficient, weak or conflicting
requirements are uncovered; the later the correction of requirements, the greater the cost.

21-5

This implies some data repository structure or interface standards are needed to insure that
requirements data can be exchanged. It also implies that more frequent technical
interchanges would benefit the development of subsystem requirements and architectural
elements (or sub-architecture).

An architecture developed for this standard must be adaptable to different platforms and
missions, so that architectural interfaces are guaranteed to be interoperable based on the
overall architecture from which they are derived. For example, the same architecture
should provide the elements needed for a space vehicle operations command function and
for the complementary ground processing in the ground mission control center supporting
that vehicle.

The architecture development was used as the vehicle for determining what practices
actually worked which should be included in this methodology. Assumptions about the
architecture were necessary to permit continued development of concepts and entities, and
were selected to place as little restriction on the underlying methodology as possible.
However, in case they may have constrained the methodology, they are identified below.
This section summarizes the architecture assumptions in three categories: those
assumptions related to the operation of a space platform, those related to the processing to
be performed, and those related to how the structure of the architecture was to be
assembled.

2.1.1.3.1 Operations

e Human control requirements can vary. Direct links from the human entry systems
to the sensor and effector firmware/hardware or any intermediate point on the
processing chain may be needed for emergency and manual backup purposes. The
range of control must accommodate any level of capability from manual to fully
automated (e.g., through artificial intelligence aids similar to the Lockheed Pilot's
Associate being developed for the U.S. Air Force).

e Operations control requirements must span the range from on-board controls to
mission control center to the "back room" control support. The SGOAA must
explicitly define and incorporate unique elements for either specific ground support
or space vehicle architectural needs. Partitioning between these facility control
requirements should be done when applying the requirements to a specific platform

21-6

or mission, or should be delayed until a design implementation is being prepared to
maximize developer flexibility.

2.1.1.3.2 Process

The architecture must enable objective definition and interoperable processes for
each entity selected for inclusion in a specific instantiation of the architecture for a
specific platform.

All entities have processes which can be applied to multiple vehicles with control
parameters used to adjust between the same type process used in different classes of

vehicles.

Sensors and effectors are assumed to be under hardware control only or to have
firmware embedded in them for low level hardware control. Firmware processing is
treated (for requirements and design purposes) as an integral part of the hardware.
Sensors firmware processing may also enable or disable hardware, monitor power
drain, monitor for abnormal conditions, implement built-in-test (BIT) of hardware
and store results (these may alternatively be performed in the intermediate
processors as described below).

The architecture must handle alternative forms of processing and alternative
allocations of these processes to different elements of the overall system for each
mission design. Low level processing is assumed to be embedded in sensor and
effector heads; such processing may be hardware only or have embedded firmware
such that the processing will be relatively "dumb” but with sufficient capability to
gather data, format it for transmission, and route it to appropriate controllers.
Intermediate level processing includes processing such as sensor signal processing,
effector response actuator processing, post sensor processing (e.g., track processing),
multiplex data processing etc.; such processing is treated as a high level control
structures (i.e., Control Application Programs) requiring some decision making
capability to implement one of a number of alternative hardware control parameter
sets in an intelligent system. High level processing includes two types of processing:
one which provides a capability for the crew to control the vehicle or facility, and
one for internal systems control of all activities. Processing such as needed for
systems control, vehicle control, integrated logistics control, crew management, etc.
are treated as high level command structures (i.e., Command Application Programs),
which require interaction with humans and some capability to present alternatives

217

to humans, and to interpret ambiguous responses from humans. Command
application programs provide both types of high level processing. Figure 2-4 depicts
the processing architecture assumed which the Space Generic Architecture must
handle, and which the methodology for development must be capable of analyzing.

T
xS

Y sENSOR Nihnn

SENsORS,\ |{ EMBEDDED §\§§*§§§*’

FIRMWARE / [\ P X80 OPERATIONS
TS 3

CONTROL [© CONTROL JS=d— CREW
PROCESSING PROCESSING

AR

R
—

e

R 2 ' = 3
T PPLICATION : External

Eloments
EMBEDDED
\ PROCESSING

R

Es N SR
X AR 3 i
EFFECTORS) - = . SPACE DATA SYSTEM SERVI
FIRMWARE (for alk applications)
3 \‘\ SR
" Q

o L SRR

Figure 2-4. Potential Process Partitioning included by the Space Generic Architecture

2.1.1.3.3 Structure

¢ One of the purposes is to enable the creation of an open, generic, standard
architecture which can be tailored and reused for multiple missions. The
methodology will then provide guidelines for doing the tailoring to create mission
specific instantiations of the architecture. The reuse of the architecture and its
components will become the standard way of developing new space data systems.

* The basic architectural guideline for differentiating processing levels is based on the
philosophy of "Centralized Command and Decentralized Execution”

* The architecture must be a "shopping list" of all possible processes applicable to any
space vehicle or other-planet base.

* Some entity processes only apply to a specific class of vehicle. Such special entity
applications should be built into the naming conventions if feasible to more clearly
convey the dependency of the entity application to the specific platform. The

218

convey the dependency of the entity application to the specific platform. The
definition of entity names must use unique names for each entity for clarity and for
tool searching of dependencies.

¢ The software principles of abstraction, information hiding and modularity are
applicable to systems development and will provide the same benefits to
requirements analysis and system design as they do to software analysis and design.
Use of such principles will improve the maintainability and reusability of the
architecture developed and used as the example for this methodology.
Improvements in maintainability and reusability will not be allowed to reduce the
requirements for performance which may be necessary; proof through architectural
simulations must be provided that performance of an architectural instantiation is
acceptable. Hard real-time constraints on system performance will exist and must be

met.

¢ A hardware architecture was assumed consisting of a core network, multiple general
avionics processors (GAP) elements not necessarily of the same type, multiple buses,
multiple multiplex data processing [GAP(M)] elements, embedded sensor processing
[EP(s)] and embedded effector processing [EP(e)]. This is represented in Figure 2-5.
The interface plugs shown represent the unique hardware interfaces which must be
defined by standards and handled in processing.

2.1.2 REFERENCE MODEL DEFINITIONS

Definitions of the terminology used in this architecture standard are contained in Appendix
A. The terminology is based on industry standards definitions wherever feasible.
Determination of the scope of architecture, avionics, systems, services and applications
depends to some extent on the definitions for these items since definitions can focus
attention or exclude attention. The reference model must describe information interfaces
using services available to an Application from the host Application Platform. It must
describe processing interfaces using services available internally to Applications Platforms,
meeting the requirements of Applications Software entities. Processing interfaces provide
the services commonly available to many applications, but not designed for just one
application.

219

SOIUOIAY DUauaN) dedg Ay} 10 pawNssy aINIOANNYIIY aremplrey ‘G-z am3pg

FOVIAUNI

ITGVYNI43A "U3sN

LNdLNO/LNDNI

SAHIVHO ¥ O3AIA

(.85N1d.)

SOUYONVLS JOVIELN

SH0103443

\ ;
v
e M

SHOSN3S

2.1-10

2.1.3 RELATED ARCHITECTURAL STANDARDS AND REFERENCE MODELS

FOR AVIONICS
2.1.3.1 POSIX Open System Environment
The POSIX OSE Reference Model, defined in [POSIX91], is the top level standard within
which the SGOAA must fit, as previously shown in Figure 2-1. The OSE Reference Model
enables application software portability at the source code level and application software
and system service interoperability between heterogeneous systems. This environment
will establish a set of specifications, standards and procedures common to all missions
which must operate concurrently, with inherent upgradeability. Definition of entities and
interfaces based on the OSE model can facilitate requirements definition for designs which
have the open and generic characteristics needed. This model is not an implementation
architecture; it is used to identify subsystems (entities in the model), interfaces between
subsystems, and services at the interfaces. Figure 2-6 depicts the OSE model.

APPLICATION
PROGRAM

INTERFACE
(API)

User c EXTERNAL

omm ENVIRONMEN"
Info INTERFACE
(EEI)

Figure 2-6. Open System Environment Model of Applications and Interfaces

21-11

There are three types of entities used in the OSE Model: Application Software, Application
Platform and External Environment. Application Software (AS) is the set of processes, data
and associated performance parameters and documentation in electronic form related to
operation of a data processing system. An Application Platform (AP) is the set of services
and resources needed to run the applications. The External Environment (EE) is those
elements outside the boundaries of the entity of interest which need to exchange
information with the entity of interest. The external environment includes permanent
data stores, electronic communications entities and human entities.

Applications Software interfaces through the Applications Program Interface (API) to the
Application Platforms. The API interfaces are:
¢ User - An interface intended to provide access from the Applications Software with
the user by defining the services available to the applications software for exchanging
information with the user.

¢ Communications - An interface defining services available to the Applications
Software to exchange state and information with Applications Platforms or other
Applications Software.

¢ Information - An interface providing non-communications language bindings and
services to exchange state and information to be provided with the Applications
Platforms or with other Applications Software.

¢ System Services - An interface defining language bindings and services for available
internally to the Applications Platforms and not used by the Applications Software
for portability or interoperability with other Applications Software or Applications
Platforms.

Application Platforms interface through the External Environment Interface (EEI) to other
Application Platforms. The three types of interfaces used in the EEI are:

* User - An interface for physical access between the machine and human, providing
the "look and feel” of the means of human interaction with the Application
Platforms.

¢ Communications - An interface providing language bindings for service for
connectivity and protocols for state and data interchange.

* Information - An interface providing language bindings for service using physical
and logical file structures, characterized by floppy media.

21-12

The OSE model, shown in Figure 2-6, using AS, APIs, APs, EEIs and the EE can involve
multiple subsystems. In the SGOAA, each subsystem application (e.g., GNC Control, C&T
Control and SOCS) is the Application Software. The central architecture consisting of
processing hardware and system services are the APs. The subsystem application to system
services interface is the API, which is implemented for communications through the SDSS
communications network services at the OSI layer 7. The AP (i.e., avionics) to EE (ie., the
users, hardware sensors, effectors and communications devices) interface is the EEI, which
is implemented for communications through the SDSS communications network services
at the OSI layer 1.

Section 2.4 discusses the relationships of the SGOAA Interface Model Classes to the POSIX
Model interfaces.

2.1.3.2 0S| Model

The OSI Reference Model [ISO7498] is a Network Services Model. Network Services is only
one resource of many competing resource processes provided by both the POSIX and
SGOAA Models. Applications gain access to POSIX Network Services via the POSIX API
Communications Services Interface and to SGOAA Network Services via the SGOAA Class
5 Interface (Applications Software-to-System Services Software). SGOAA Network Services
are discussed in more detail in paragraph 3.4.1.3. In the OSI model, applications gain access
to Network Services via an applications-to-services interface. Interfaces provided by
Network Services must be open network interfaces, protocol independent and provide for
network protocol interoperability. The POSIX OSE reference model focuses on the
requirements of application portability and system interoperability at the source code level
by addressing these objectives at the Applications Program Interface (API) and at the EEL
Internal Application Platform Interfaces are not addressed.

The OSI Model defines the Communications (Network) Services API and EEI interfaces of
the POSIX OSE reference model and the SGOAA Interface Model as shown in Figure 2-1.
The OSI Model expands upon the POSIX Communications Services Interface and SGOAA
Network Services by defining in great detail how Network Services Standards should work
and fit together. SGOAA extends the POSIX Model beyond the basic POSIX objectives by
defining six SGOAA interface classes, addressing application platform internal interfaces
and recommending additional data systems software specifically applicable to space based

21-13

systems. The compatibility of the OSI model and the SGOAA Interface Model involves the
interface class relationships shown below:
e OSI Layer 1: This layer is the actual connection to the transmission medium,
handling the transmission and reception of raw bits across the medium. This is a
SGOAA Class 1 Hardware-to-Hardware Direct interface.

e OS] Layer 2: The interface between OSI hardware and software layers. This is a
SGOAA Class 2 Hardware-to-System Software Direct interface.

e OSI Layer 3: A software layer that accepts packets (or frames) of data from the
Transport Layer (software) and routes them to their destination over all necessary
links and intermediate systems as necessary. This is a SGOAA Class 4 System
Software-to-System Software Logical interface.

» OSI Layer 4: A software layer that provides reliable data flow between a sender and a
receiver while relieving these entities of the need for detailed knowledge of the
actual transport mechanism. This is a SGOAA Class 4 System Software-to-System
Software Logical interface.

e OSILayer 5: A software layer that establishes communications paths between
systems and terminates them upon completion of transmissions. This is a SGOAA
Class 4 System Software-to-System Software Logical Interface. —

e OSI Layer 6: A software layer that performs a translation function to convert
messages from a native format to an international standard format for transmission,
and from the international format to the native format upon reception. The
international format is a transfer syntax, a set of rules for the representation of data
while in transit between two presentation entities. This translation is performed by
Network Services on network data only and not to application data. Thisis a
SGOAA Class 4 System Software-to-System Software Logical interface.

e OSI Layer 7: Provides the interface between application programs and the network.
This is a SGOAA Class 5 System Software-to-Application Software Direct interface.

The OSI model does not address SGOAA Class 3 System Software-to-Software (Local) Direct
nor does it address SGOAA Class 6 Application Software to Application Software Logical
interfaces.

21-14

Much standardization effort has gone into all aspects of networking, especially those aspects
that are available at the EEL. Effective networking standards at the external interface are

fundamental to providing system interoperability.

21-15

2.2 SPACE GENERIC OPEN AVIONICS ARCHITECTURE REQUIREMENTS

These requirements are based in part on the generic open architecture requirements defined
in reference [BOE91). These requirements provide a baseline for tailoring to a specific
mission or vehicle. Specific performance parameters from [BOE91] presented in Appendix
B are design requirements and as such are outside the scope of the SGOAA. Additional
requirements were added from other sources and experience to make the SGOAA as generic
and broad as possible.

The SGOAA shall be used to determine the interface points and requirements for the
control of, and information exchange between, onboard subsystems, support to the crew,
and effective interfaces between onboard and offboard systems. In accordance with system
requirements, a SGOAA compliant architecture shall meet open standards criteria.

2.2.1 REQUIREMENTS OVERVIEW

The SGOAA shall provide for the control and information processing of onboard
subsystems, support to the crew and effective interfaces between onboard and offboard
systems. A SGOAA compliant system architecture shall provide data acquisition, data
storage, data processing and data communication functions that interconnect architectural
elements as shown in the functional interface diagram (see Figure 2-7). The SGOAA shall
also provide the capabilities to implement, where required, data base access, electronic mail,
planning, training, simulation and monitoring of payload interfaces. Architectures
developed in accordance with the SGOAA shall meet the requirements of [WRA93] for
developing new architectural elements and for using existing applications and mission

elements.

2.2.1.1 Open Systems Requirements

An architecture developed in accordance with this standard shall satisfy the open systems
architecture definition incorporated in this standard. An architecture shall meet open
standards to insure access to the architecture for any vendor or agency desiring to propose
new uses and applications, and to facilitate competition to contain cost growth. The open
architecture so developed shall be capable of being readily expanded in functionality and
performance without redesign or significant modification to the existing system. An
architecture satisfying this standard shall provide information hiding, abstraction,
inheritance, modularity, robustness and extensibility.

22-1

Control subsystems may be decomposed into lower level subsystems. A control subsystem
usually implements a unique avionics capability.

2.2.1.2 Lower Level Standard Selection

Lower level standards developed by accredited standards development organizations
(which use an open forum) shall be preferred in selection over those standards developed
by bodies using a closed forum. Lower level standards shall be selected by the process of
developing a standardized profile. Architecture specifications for which there is no draft or
approved standard shall not be selected. One of the driving requirements for selection shall
be selection of a standard that provides the full range of services required to satisfy the
system applications. Other factors to consider in standards selection shall be degree of
openness in development, stage of completion, stability, compliance with national and
international standards, degree of satisfying a SGOAA service need, consistency with the
SGOAA and availability for implementation without restrictions.

Preference shall be given to existing mature standards, followed by emerging standards, and
only if necessary, followed by new standards. The order of selection within these
preferences is as follows:
e Approved standards developed by (a) accredited international bodies, (b) accredited
regional bodies and (c) accredited national bodies.

e Draft standards developed by (a) accredited international bodies, (b) accredited
regional bodies and (c) accredited national bodies.

* Recognized de facto standards and specifications developed by nonaccredited bodies
using an open forum.

e Approved standards and specifications developed by nonaccredited international
standards bodies using a closed forum.

e Approved standards and specifications developed by nonaccredited national
standards bodies using a closed forum.

222

§a0eyI93U] [UORIUN YVODS “Z-T dM3Ld

-

SRSINIA % 1501 UoneIBen

Ajinses >

jujwi|] g bujduenbeg weA3

|AjeneY ¢ obBIOIS u«anv

GonnaIeIa ¥ UORISIBoY Sl
-

SUOJIBIJUNWIWIOD HIOMION

»

$99|AISS eS| UoWWIOoD

JueweBeueyy swejsAs

Bupjoesy -
suojjedjUNWWod -
spuewwod -
Anewseje) -
sebpiq/Aemeled -
SUOPUNI pIeoqlio

suojouny
obseo/peoiied

suojjounj uopesjdde -
si0)00))0 -
s)iomjeu
uojjejuswniisuy -
sl0Sues yews -
Moo pieoquo -

suopdung precg-uo

SpP{9-ABN o

e o

VA3 e
8.J8)|04)u0)

g puojied @
siejjosuod)

OpoN e
s10||01u0)

punoin e

Juawidly WbId

223

2.2.2 ARCHITECTURE FEATURES

Requirements for architectures compliant with the SGOAA consist of general guidelines for —
developing new architectural elements and for using existing elements in tailoring

architectures to specific applications and missions. Developing a capability to apply generic

or other standard architectures to new missions and vehicles is a key focus of SGOAA

requirements definition. Requirements for SGOAA compliant architectures also address

detailed, specific technical features which must be achieved by acceptable architectures. This

section describes the features which a SGOAA compliant architecture must provide:

Privacy and proprietary data will be handled by the SGOAA, with provisions and interfaces
for handling national security data requiring NSA-type protection requirements to be
optional.

2.2.2.1 Requirements Architecture

An architecture prepared in accordance with this standard shall be an architecture that can
be tailored for design implementation based on actual system requirements.

2.2.2.2 Critical Intertaces -

An architecture prepared in accordance with this standard shall provide flight, mission and
safety critical functions and interfaces.

2.2.2.3 Service Interfaces

An architecture prepared in accordance with this standard shall provide non-critical
support functions and interfaces, such as data base access, electronic mail, planning,
training, simulation and monitoring of payload interfaces.

2.2.2.4 Resource Control

An architecture prepared in accordance with this standard shall provide for control of system
resources used for control and information processing in onboard systems by use of system services
software as requested by application software through a standard interface.

224

2.2.25 Commonality

The architecture shall be comprised of common hardware and software components to the
maximum extent possible. The SGOAA shall require the use of standard interfaces. Non-
common components or non-standard interfaces shall require a waiver from the procuring

agency.

2.2.2.6 Interface Standardization

An architecture prepared in accordance with this standard shall provide standard interfaces
and allow user definable interfaces where no standards exist or are not applicable. Interfaces
between hardware and other hardware entities shall be based on standards. Interfaces
between hardware and software shall be based on standards. Interfaces between system
services software and applications software shall be based on standards. Interfaces
prohibited in an architecture compliant with this standard shall include: (1) direct, non-
service task to task communications, and (2) applications to applications direct information
exchanges, which bypass use of system services. Special user definable interfaces may be
defined within the standards.

SGOAA allows external interface(s) for:
e gateway to/from non-SGOAA component

¢ bridge to/from non-SGOAA component
¢ data to/from Communications and Tracking
e onboard crew user interfaces

¢ transducer interfaces (sensors and effectors).

2.2.2.7 Crew Override

For crewed vehicles, an architecture prepared in accordance with this standard shall enable
crew intervention, through multiple techniques, to safely override or inhibit automatic
flight, mission or safety critical functions. For uncrewed vehicles, the architecture shall
enable ground control station intervention to safely override or inhibit flight, mission or
safety critical functions.

225

2.2.2.8 Dependabllity Management
An architecture prepared in accordance with this standard shall manage dependability.

An architecture compliant with this standard shall provide at least health and status
monitoring and warning capability to monitor critical functions in onboard systems,
subsystems, components and crew. System service software BIT shall be incorporated into
software control modules. Hardware built-in-test equipment (BITE) shall be incorporated
into hardware modules. The interface between hardware BITE and health and status
applications software shall be through standard software services.

An architecture compliant with this standard shall provide at least operating modes for: (1)
mission ready, (2) operationally ready, (3) degraded, and (4) red-tagged.

2.2.2.9 Data System Services

An architecture prepared in accordance with this standard shall include requirements for
data system services. This shall consist of at least requirements for standard data services
management, network services management, data base management, data system
management, and an operating system.

The standard data services management shall include at least requirements for standard
services data acquisition, standard services data distribution and reports generation. The
network services management shall include at least requirements for network services,
network management, remote operation, network directory service, and network
association control. The data base management shall include at least requirements for file
services, distributed file transfer services, file transfer access and management, and node
directory. The data system management shall include at least requirements for
configuration management, timing service control, initialization startup and
reconfiguration, and health status and fault detection and recovery. The operating system
shall include at least requirements for an OS kernel, an Ada run time environment (RTE)
and OS/RTE extensions.

An architecture prepared in accordance with this standard shall support onboard fault

recovery.

226

2.2.2.10 Growth and Spare Capacity

An architecture prepared in accordance with this standard shall accommodate growth and
spare capacity in data storage, processing throughput, network throughput, input/output
and additional sensors/effectors as required by system documentation.

2.2.2.11 Modularity
An architecture prepared in accordance with this standard shall be modular.

2.2.2.12 Service Transparency

An architecture prepared in accordance with this standard shall be implemented with
sufficient transparency that the user will have visibility into the operation of services, but
not necessarily the implementation of services.

2.2.2.13 Technology Transparency

An architecture prepared in accordance with this standard shall be implemented with
sufficient transparency that technologies applied to design can be upgraded without revising
the architecture and without negative impact on the user.

2.2.2.14 Interoperability
An architecture prepared in accordance with this standard shall support interoperability by
providing standard interfaces between multiple programs.

2.22.15 Goals

The following goals are desirable characteristics that a system architecture should possess.
They are not incorporated into the SGOAA Standard as they are not considered to be
mandatory requirements.

(1) An architecture should be sufficiently general and portable to be adapted and applied
to many missions, platforms and vehicles, meeting many operational requirements,
to enable designs for new missions to be prepared with less cost growth and with
more reasonable development schedules (by reusing existing architecture, hardware
and software components).

227

(€Y

@

&)

©)

®

©

An architecture should facilitate design structures which can be verified (by
establishing consistency and completeness across multiple platforms)

An architecture should provide a basis for validating that systems and procedures
meet future space mission needs

An architecture should ensure future space avionics systems can be upgraded and
maintained through use of modular interfaces and reuse of hardware and software

An architecture should have integrated the end-user avionics and support data
processing and controls.

The design and development approach should not unduly constrain the architecture
and its application.

The architecture shall provide for optional capabilities selectable by the users during
design, such as event timing to sequence events as determined by application

requirements.

The architecture shall facilitate migration of functions from offboard (ground or
node) to onboard components.

The architecture shall provide for the separation of functions and resources for the

levels of functional criticality shown in Figure 2-8 and defined in Table 2-1. Note that —
the notation and definitions in Table 2-1 are used throughout this section to

segregate functional requirements. The notations are as follows:

¢ Flight Critical, Level 1 = FC1

e Safety Critical, Level 1 = SC1

¢ Mission Critical, Level 2 = MC2
¢ Utility, Level 3 = NC3

228

Flight Critical (FC) Interface-9., GNC
Propuilsion Control

HMI (FC)

Safety
Critical (SC)
Interface
e.g.,
HMI (SC)
Utilities
Interface
e.g.,
HMI Utility
ﬁ:::'n':atlon Mgt Mission
Electronic Mall c:‘;:?rlfa(c':c)

e.g.,

Pianning mode
Manipulators Comm &
Track Payload Services
HMI (MC)

Flight Element 1 T
Flight Element 2

HMI = Human-Machine Interface

Figure 2-8. SGOAA Functional Requirements

Table 2-1. Critical Condition Categories

Level Category Critical Condition
1 Flight Critical | Loss of vehicle control results in loss of vehicle and
(high) (FC) crew.
1 Safety Critical | Increase in hazard results in loss of vehicle, crew or
(SC) both
2 Mission Critical | Incomplete mission results in mission abort or loss of
MOC) payload
3 Uu’léty No control loss or unsafe condition
(NO)

2.2.3 EXTERNAL INTERFACES

Section 2.2.3.1 contains the specification of requirements for the interfaces of a system
architecture with its external environment as derived from the SGOAA. The standard
interfaces shall include the direct/physical and indirect/logical interfaces to meet functional
system requirements.

Section 2.2.3.2 contains objectives for providing system capabilities that the development
team considered in development of the SGOAA.

2.23.1 External Interface Requirements

Portability, interoperability and standards usage are mandatory requirements included in
the SGOAA Standard.

2.2.3.1.1 Portabliity

Portability is accomplished by a standard interface between executive software and
application software. Direct physical interface application software to application software
communication is not allowed.

2.2.3.1.2 Interoperability

Interoperability is provided by standard interfaces between software applications and
between application platforms. The standard interfaces include the physical, electrical and
optical interconnection and both the logical and physical functional interfaces.

2.2.3.1.3 Standards

The SGOAA will accommodate existing, emerging and new information technical
standards. The recommended selection of standards shall be consistent with the applicable
NASA standards such as NASA-STD 3000, Volume IV and shall also comply with the
[POSIX91] recommendations. A partial list of related standards is shown in Table 2-2.
Selection will draw from many different sources. The selection of lower level standards is
discussed in paragraph 2.2.1.2.

22-10

Table 2-2. Partial List Of Related Standards

STANDARD

TITLE SOURCE
NO. _ _
9945-1 Process Management International Organization for
Standardization and
International Electrotechnical
Commission (ISO/IEC)
MIL-STD-1553 MIL-STD-1553 Multiplex United States Air Force
Application Handbook
X3.168 SQL Standard Database Language | American National Standards
Institute (ANSD
P1003.1 POSIX System Interfaces Institute of Electrical and

Electronic Engineers (IEEE)

2.2.3.2 SGOAA Development Interface Definition Objectives
In development of the SGOAA, it was a requirement to provide the SGOAA with the

capability to support the interfaces defined in this paragraph when applying the SGOAA to a

specific system design.

2.2.3.2.1 Human Interfaces

For occupied manned elements, the SGOAA shall provide interfaces for the following

avionics to human interfaces and resource capabilities.

(1) Onboard Human interfaces

Onboard crew interface to the avionics for assembly/checkout, pre-mission, mission

and post mission phases.

Real-time (FC1, SC1,MC2) processing and interface for controls and displays.

Processing and interfacing to controls and displays of critical non-real-time
functions (SC1,MC2).

Processing and interfacing to manned systems desktop functions and electronic

mail.

Resources and interfaces for application development and modifications.

22-11

Manned monitoring of subsystem status.
Resources and interfaces for training and simulations
(2) Offboard Human Interfaces
Offboard human interface to the avionics for assembly/checkout, pre-mission,
mission and post mission phases.
An external control center command and control interface.

An external control center payload/cargo data interface.

2.2.3.2.2 Application Interfaces

The SGOAA requires that the only interfaces an application has is through a standard
interface and the subsystems the application supports. No application-to-application
physical interface is allowed. The standard interface shall support messages, datagrams
(non-acknowledged messages), files and records. Critical real-time software must be
deterministic for both operations and for verification. Application data traffic for both
operations and for verification shall meet the priority requirements of Data Handling
Capability. The SGOAA shall provide the following support to applications:

Software support:

critical, real-time (FC1,5C1, MC2)
critical, non-real-time (SC1,MC2)
non-critical (NC3)

Hardware interface:
critical, real-time (FC1,5C1, MC2)

critical, non-real-time (SC1,MC2)
non-critical (NC3)

Operations access control:

critical, real-time (FC1,5C1, MC2)
critical, non-real-time (SC1,MC2)
non-critical (NC3)

System health monitoring data for all onboard functions.

2.2-12

2.2.3.2.3 Sensor Interfaces

The SGOAA shall support interfaces for the implementation of signal conditioning for
either analog or digital sensor signals. The SGOAA shall support either direct connection to
the sensor interface or through an intermediate network. The standard sensor interfaces
shall be of a data bus compatible, data bus non-compatible or high data rate type and shall
accommodate both real-time and non-real time data.

2.2.3.2.4 Effector Interfaces

The SGOAA shall support interfaces for the implementation of signal conditioning for
analog and/or digital effectors. The SGOAA shall support either direct connection to the
effector interface or through an intermediate network.

2.2.3.2.5 Payload/Cargo Interfaces
The SGOAA shall support a standard interface to payload(s). The standard interface shall

include:

¢ A standard interface for the command and control of payload(s) and cargo.
¢ Standard data communications from payloads and cargo to offboard interfaces.

¢ Payload event timing for employment of each onboard payload.

2.24 SGOAA DEVELOPMENT FUNCTIONAL REQUIREMENTS

The SGOAA shall be designed to support systems based upon a modular building block
approach.

Instantiations of the SGOAA shall share common functional building blocks in order to
minimize the number of different types of functional building blocks. The SGOAA shall
provide standardized hardware interfaces for common functions. The SGOAA shall
provide standard Operating System interfaces for application software.

22-13

224.1 Process and Data Requirements

2.2.4.1.1 Message Transfer

The SGOAA shall provide the capability to implement multiple service grades for the
levels of criticality shown in Table 2-3 and for onboard users to request each grade of service.
RT is real-time service and NRT is non-real-time service.

Table 2-3. Message Transfer Service Grade

GRADE
FUNCTION I 11 i
FC1(RT) Required not allowed not allowed
MC2(RT) Desired Allowed not allowed
MC2(NRT) Allowed Desired Allowed
SC1(RT) Required not allowed not allowed
SC1(NRT) Required not allowed not allowed
NC3(NRT) Allowed Allowed Desired

Three grades of data delivery service are to be supported, as defined in Table 2-4, among
onboard users and between users and Communications and Tracking (C&T).

Table 2-4. Message Transfer Service Grade Characteristics

GRADE
CHARACTERISTIC | 1 11
Error Detection yes yes no
Out of Sequence Check yes no no
Erroneous Duplicate Check yes no no
Completeness Check yes no no

2.2.4.1.2 Data Storage and Retrieval

The SGOAA shall provide for the support of standard data transfers within the SGOAA.
For transfers outside of SGOAA boundary , one end of transfer will be from a gateway or
C&T and other end will be SGOAA.

2.2-14

The SGOAA shall provide for support of a Mass Data Storage Capability.

In support of file/record management, the SGOAA shall provide for support of Global
Standard File Naming and Directories.

In support of data base management , the SGOAA shall provide for local and remote access
to onboard SGOAA databases that is consistent with security and data privacy requirements.

The SGOAA shall provide for the support of an Electronic Mail Service standard.

2.2.4.1.3 Crew Common User Data Services

The SGOAA shall provide for the implementation of resources and interfaces to support
the following manned flight crew common user data services:

e Monitor and control access interface to avionics for manual override or inhibit of
all functions.

e Monitor and control access [MC2(RT), MC2(NRT), SC1(RT) and SC1(NRT)]
interface to payloads for manual override or inhibit of all functions.

¢ Caution and Warning Displays [SC1(RT) and SC1(NRT)] interface for
audible/auditory/visual alarms.

e Utilities [NC3(NRT)linterfaces to support on-line help, word processing, mail,
calculator, spreadsheet, display processing.

e Unique avionics support to training [NC3(NRT)]

e Unique avionics support to simulation, real-time [SC3(RT)] and non-real-time
[SC3(NRT)] resources and interfaces for in-situ skill training.

2.2.4.1.4 Data Systems Management

The SGOAA shall provide for support of fully automatic operation for each mission phase
with human intervention via authenticated crew input.

For health and status reporting, the SGOAA shall provide the capability to implement data
gathering from all onboard functions.

22-15

The SGOAA shall provide for the capability to implement safe power up and graceful
power down of avionics during initialization and shutdown.

The SGOAA shall provide the capability to control and manage avionics resource usage
based upon operations sequencing management and health/status. Support to
implementing control requirements for the following areas shall be provided:

¢ Avionics System configuration control

e Data System Services configuration control

¢ Avionics System caution and warning

» Integration and reconfiguration of avionics resources
* Network management

* Inventory and maintenance management

2.2.4.1.5 Application Processing Support

The SGOAA shall provide for support of application processing and interfunctional
application data. Executable memory loads shall be divided between flight/safety critical
load, mission critical / payload load, and utility load. _

2.2.4.1.6 Event Sequencing and Timing
The SGOAA shall support provision of an event sequencing and timing service interface.

2.2.4.1.7 Data Acquisition and Distribution

The SGOAA shall provide support of standard data reception, conversion, formatting,
transmission, validation and status for:

¢ Data bus compatible transducers
¢ Non-compatible type transducers
¢ Telemetry data formatting

¢ Instrumentation data acquisition
High bandwidth data link (s)

Time reference generation and distribution

22-16

2.2.4.1.8 Data Handling Capability

The SGOAA shall provide for support of user access to user-provided transducers. The
SGOAA shall support distribution of payload data to onboard and offboard users through
either umbilicals or C&T. The SGOAA shall provide for support for on-line, rapid access
mass storage for payload and onboard use.

The SGOAA shall support transparent reception, transmission, processing, storage and
distribution of payload commands and data.

The SGOAA shall support implementation of flow and congestion control. Flow and
congestion control is defined as the process for detection and correction of congestion in
order to prevent the congestion from propagating from a network into other networks.
The SGOAA shall support implementing a a priority system for message handling.

2.2.4.1.9 Test and Verification Support

The SGOAA shall support the ensuring of end-to-end functional correctness within the
SGOAA boundary. The SGOAA environment shall support the necessary tools, services,
diagnostics, built-in test equipment, on module built-in test, test plans, and facilities for
evolving flight element avionics from assembly, pre-mission checkout through mission

operation.

The SGOAA shall support avionics hardware reintegration (introduction of flight hardware

previously removed from operation) without requiring shutdown of the total avionics

system.

The SGOAA shall support implementation of the necessary tools for the crew to perform
onboard or offboard maintenance.

2.2-17

The following factors should be considered in any system design. The actual requirements -
must be based upon mission needs. Development of the SGOAA shall be such that it does

not preclude support of these considerations. A SGOAA compliant system shall have as a

minimum the throughput and memory capacity margins shown in Table 2-5.

Table 2-5. Capacity Margins For Growth*

CONDITION PDR CDR ACCEPTANCE
% Worst case memory usage of allocated 50% 65% 85%
space within resource processor(s)
% Worst case usage of each target 5% 50% 65%
processor
% Worst case channel throughput 50% 65% 85%
allocation of each network

*Source - SSP 30000, "Program Definition and Requirements Document"

2.2.4.2.1 Fault Tolerance

As a minimum, an SGOAA compliant system shall maintain normal operational state in
presence of:

(1) up to two non-simultaneous faults for flight critical functions FC1(RT) within
the interface boundaries of the SGOAA.

(20 one fault for mission critical functions [MC2(RT), MC2(NRT)] within the
interface boundaries of the SGOAA.

(3 no single avionics failure within the interface boundaries of the SGOAA shall
cause a safety critical (SC1) function to execute.

As a minimum, an SGOAA compliant system shall maintain normal operational state
during periods of in-space assembly and no single avionics failure shall cause a safety
critical (SC1) function to execute.

22-18

As a minimum, an SGOAA compliant system shall maintain normal operational state
during maintenance actions defined as:
(1) one fault for flight critical functions [FC1(RT)]A

(2) one fault for mission critical functions [MC2(RT) and MC2(NRT)].

(3) no single avionics failure shall cause a safety critical (5C1) function to execute.

Non-critical avionics functions (NC3) shall fail in a safe mode.

2.2.4.2.2 Fault Detection, Isolation and Recovery

SGOAA compliant systems "Onboard Fault Detection Coverage" shall detect at least 9% of
faults during power-up and initialization, 90% of faults during background normal
operation, and 95% of faults during directed health monitoring tests. (These values may be
adapted to or superseded by specific mission requirements. For example, human-tended
systems will require considerable higher FDIR than automated, expandable systems.)

SGOAA compliant systems "Onboard Fault Isolation Coverage" for 100% of the detected
faults at the module level shall be at least 98% during power-up and initialization, 98%
during normal operation and 98% during directed health monitoring tests .

Onboard Fault Recovery TBD.

2.2.4.23 Reliabllity

SGOAA compliant systems shall achieve the Mean Time Between Critical Failure (MTBCF)
and Mean Time Between Failure (MTBF) as listed in table 2-6. Confidence factor is the
proportion of times that the parameter lies within confidence interval. The actual values
that are selected to replace the TBDs in the table will be design requirements, not SGOAA
requirements, and must be based on mission needs.

2.2-19

Table 2-6. Reliability Requirements

MISSION BASIC CONFIDENCE
RELIABILITY RELIABILITY

FUNCTION [(MTBCH (MTBF) | FACTOR
FC1 TBD N/A 99%
MC2(RT) TBD N/A 95%
MC2(NRT) TBD TBD 95%
SC1(RT) TBD N/A 99%
SC1(NRT) TBD TBD 99%
NC3 N/A TBD 95%
overall system TBD TBD 95%

2.2.4.2.4 Availablility

SGOAA Availability is defined for two entities: A and Ai. SGOAA compliant systems shall
achieve an availability for A and Ai as listed in Table 2-7.

Availability = A = (Uptime)/(Total Time)
= (Operating Time + Standby)
/(Total Mission Time - Dormancy Time)

Inherent Availability = Ai = MTBF/(MTBF + MTTR)

where:

Total Mission Time = Up Time + Down Time

Down Time = Mean Time To Repair (MTTR)

Dormancy Time is the time the system is in the Off Time, except possibly
for low level of monitoring

MTBF is Mean Time Between Failure

MTTIR is Mean Time To Repair

The actual values that are selected to replace the TBDs in the table are a design requirement,
not an SGOAA requirement, and must be based on mission needs.

Table 2-7. Availability Requirements

AVAILABILITY CONFIDENCE
FUNCTION (A) (Al) FACTOR
KC1 TBD TBD 99%
MQ2 TBD TBD 95%
SC1 TBD TBD 99%
NC3 TBD TBD 95%
Overall System TBD TBD 95%

2.2.4.2.5 Maintainability

SGOAA compliant systems shall support maintainability during in-space checkout, mission
operation and on planetary surfaces, as required.

SGOAA compliant systems shall support achieving a Mean Corrective Maintenance Time
(MCMT) of no greater than TBD minutes (EVA) and TBD minutes (IVA).

The Mean Time To Restore system for SGOAA compliant systems shall not exceed TBD

minutes following a system failure.

As a minimum, the design of an SGOAA compliant system shall provide for modularity,
accessibility and BIT to enhance installation simplicity and ease of maintenance.

22-21

2.3 SPACE GENERIC OPEN AVIONICS ARCHITECTURE DETAILED
REQUIREMENTS DESCRIPTION
The SGOAA is based on partitioning between logical and direct requirements as illustrated
in Figure 2-9. The model is established to include architectural functions, hardware,
software and interfaces for all avionics systems. This SGOAA requirements description
includes both system service software and applications software for the Space Data and
Operations Control Subsystems. Interfaces in this model are valid for both one platform
and multi-platform architectures on one or more vehicles. The SGOAA includes both
processing service software and applications software for the space data and operations
control subsystems as described in more depth later.

LOGICAL INTERFACE

Entity A

DIRECT INTERFACES

‘th: : .. e
s
Service i‘.‘:

Figure 2-9. Logical System Requirements Flowdown to Direct Design Requirements

This model shall be used to define how system requirements are to be applied at the
appropriate system level to determine the logical and direct interface points. System logical
data flow requirements shall be created for each client/server entity addressing the data
attributes needed by that entity or needed to be provided for some other entity. The logical
data flow requirements shall identify the source of the data and the end-user needing the
data, as well as the characteristic attributes required of the data. Logical data flow
requirements shall not be concerned with the mechanism for implementing the data
interchange. Implementation related requirements for the interfaces are a direct interface
issue relating to the mechanisms provided for flowing the data from the source to the end-

231

user. Sources of the design requirements for the interfaces, application platform hardware
and application platform services shall be derived from the Applications Software
requirements and their logical data attribute requirements based on the user's needs.

2.3.1 GENERIC SYSTEM ARCHITECTURE REQUIREMENTS DESCRIPTION

The SGOAA System Architecture Model shown in Figure 2-10 forms the basis for creating a
model of the system under development. The generic and open system architecture
proposed consists of processors which are standard, processors which can be tailored to
users applications and missions needs, multiple communications mechanisms, and
specialized hardware operating over standardized interfaces to the processors which
manipulate the data they receive or provide.

System architecture models shall consist of a functional definition of the types of processors
and communications paths required. The model shown in Figure 2-10 has three types of
processors interconnected by two types of communications. This model only shows one of
each type of hardware; the number of instances of each type of processor is variable
depending upon system unique requirements and may range for 0 to n. For example, a
centralized system architecture may look just like Figure 2-10, while a distributed system
architecture may have multiple General Avionics Processor (GAPs), Special Avionics
Processor (SAPs) and Embedded Processor (EPs). Either type of architecture may have many
core networks and/or local communications mechanisms. More than one sensor and
effector will usually be the rule in most non-trivial systems.

The processors shown in the system architecture in Figure 2-10 are a GAP for general
purpose processing, a SAP for specialized processing support (vector/massively
parallel/other), and an EP for the function of processing data within the sensor and effector
devices. The sensors and effectors shown in the example may also interact directly with the
main processors (the GAPs) or indirectly through EPs built into the sensors and effectors (if
applicable).

232

[9POJN IR YIIy wdlshg “01- N3y

SNOLLYJINNIANOD TVO01

A
Sipasssusnsas

.on._u.m_om mg—?—mm seojAie g

pispunyg N0 Mo N

jonuon

josuo g
suopsiedQ

suojeiedQ

L —, gy
S

(N 10 S) 10558001 SOUONY [eISUDD)

QupINu)
wwoy

dJeMpieH g
pappaqui3

M8

aIem)os
PapOYOIOIN

ue

o

40SS8004d peppaquil

(SHIHOMLIN 3HOD

233

- Communications paths illustrated are of two types: core networks for interconnecting sets
of general processors or nodes, and local communications for interconnecting EPs and SAPs
with their supported GAPs and general purpose processing applications. System models
shall follow the general format of Figure 2-10, but shall be tailored to match individual
system requirements.

There are sensors and effectors which can either interact directly with the main processors
(the GAPs) or indirectly through the EPs built into the sensors and effectors (if applicable).

2.3.2 ARCHITECTURE INTERFACE MODEL REQUIREMENTS DESCRIPTION

An architecture compliant with the SGOAA Interface Model requirements shall consist of
six classes of interfaces as defined in Table 2-8. These classes are the levels of interfaces from
hardware up to high level systems which shall be completely defined in an architecture
developed in accordance with this standard. Definition of each interface class shall be in
accordance with the requirements contained in the following paragraphs.

The relationships of these interface classes to the POSIX Model is shown in Figure 2-11 and
Section 2.4 provides an in-depth discussion of the SGOAA relationships to the POSIX
Model. —

The following subsections describe each of these interfaces in more detail and provide
examples to clarify the use of these interface standard classes.

23.2.1

The Class 1 Hardware-to-Hardware Direct Interface include three key aspects of the class 1
direct interface: the interface architecture, the generic processing external hardware
architecture, and the general avionics processor internal hardware architecture.

234

Table 2-8. Architectural Interface Classes

CLASS

DESCRIPTION

Hardware-to-Hardware Direct:

Class 1 hardware direct interfaces are the direct connections between
different types of hardware such as needed to enable buses and
communications links to address processors or needed to enable processors
to address memory registers.

Hardware-to-System Software Direct:

Class 2 hardware to system software direct interfaces are the direct
connections between hardware registers and system service software
drivers, such as needed to enable address registers to move data packets
from hardware to system service software, and service drivers which can
respond to the data packets.

System Software-to-Software (Local) Direct:

Class 3 system service software to other software direct interfaces are the
direct connections between operating system service code and other local
software code sets, which enable operating system software to receive and
interpret data packets, and pass them on to other software code which will
process them locally.

System Software-to-System Software Logical:

Class 4 system service software to other system service software logical
interfaces are the indirect connections which enable local service software
to determine the address of the intended software in other local or remote
locations which need the register data being stored and to pass the data
appropriately. Enables the handling of logical data transfers from source to
user service

System Software-to-Applications Software Direct:

Class 5 system service software to applications software direct interfaces are
the direct connections which enable software service code to access and
process data from local application software code.

Applications Software-to-Applications Software Logical:

Class 6 applications software to applications software logical interfaces are
the indirect connections which enable an application originating data to
pass it to an application which needs to use the data, or enable an
application needing data to determine the source from which the data must
be obtained. These are logical data transfers from source to user. This
interface provides the indirect connections that allow applications in
different systems or in the same system to communicate, thus enabling
applications software to interact across system boundaries or within system
boundaries to accomplish a mutual purpose. These interfaces may be
applicable to applications executing in the same processor, in different
processors in the same node or in different systems.

235

sdpysuope|ay sse[D) 3deyIU] [PON dDBJINU] IMPANYIIY [1-Z 21n31g

=] -
2RO} JUSIUOHAUS BUIOXT = 133 0°€00Ld XISOd 01 sasse|) NIV JO saiysuolie|oy
038}10)1| WLIOLN| 4 sSuopRIjKidy = (dY

JUSWUOUAUT [ELIDIXT _wm (a) 1 ssed

alempien aieMpIeH (a) z ss®1D

(@)1 ssed

wiioield uoneanddy

K3 S

3LH/SO |

(a) £ sse1d

(1) v sse1d

REETTFE /s uonedstddy MS uonesiddy

(1) 9 ssed

2.3.2.1.1 Hardware Interface Architecture Models

Hardware to hardware direct interfaces are shown in Figure 2-12. These interfaces consists
of the nuts, and bolts, chips and wires of the hardware architecture described previously.
With regard to the mode], this interface consists of all the hardware to hardware interfaces
within each processing element, as well as the hardware interfaces to the external
environment by way of the core network, local communications or direct interfaces. This
architecture provides for three classes of processors: the EPs, SAPs and GAPs for which
standardized interfaces are required to be selected from a set of acceptible lower level

interface standards.

The GAP architecture can be configured to provide hardware components to interface to a
core network, to interface to local buses, to process applications, and optional components
for other purposes (such as serial input and output to direct analog and discrete links). The
SAP architecture can be configured to provide hardware components for control, filtering,
bus interface and other specialized purposes. The EP architecture can be configured to
provide hardware components for microcontrol, BIT, hardware handling and setup, and
bus interface. As shown in Figure 2-12, the GAP is the focus of efforts to standardize the
hardware processor support due to its general purpose nature.

This architecture can also be configured to provide communications capabilities from three
classes of communications: local communications within a subsystem between multiple
processors, core network communications between multiple subsystems or systems and
direct communications to embedded processors to sensors and effectors. The local
communications can be implemented by a combinations of buses and direct links for
analog, discrete or serial communications between subsystem elements or components.
Core networks can be implemented by high capacity buses such as FDDI or by direct links
between high data rate elements. The communications from sensors or effectors to EPs are
only possible through direct links because the intention of the architecture is that embedded
processors are those processors embedded in the sensor or effector hardware devices to
minimize the communications latencies since some of the sensors and effectors will have
very high data rates and very low tolerance to latency or time delays.

237

V)

SIJBJIU] 19II(] d1eMpIeH 0} arempiel | sse[) ‘Zl-z 2am3iy

The external GAP hardware interface standards needed are identified in Figure 2-13 for this
architecture. The interfaces are shown in black, and everything else has been greyed out of
focus (note that the resulting GAP internal architecture is shown in full, without greying, in
Figure 2-16).

2.3.2.1.2 Generic Processing External Hardware Architecture Models

The System Hardware Architecture is shown in Figure 2-14. The architecture core network
represents the inter-subsystem connectivity, and can be implemented by a combination of
one or more communications paths using point-to-point, ring, bus or other architecture
designs. Typically, core networks are implemented by lower level standards such as Fiber
Data Distribution Interface (FDDI) or Ethernet. Local communications provide the intra-
subsystem connectivity for high speed data communications between processors within one
subsystem. Typically, the local communications are implemented by lower level standards
such as MIL-STD 1553B for local command and telemetry data buses, R5-488 for timing
controls, and direct links for analog and discrete signals. The interface plugs shown
represent the unique hardware interfaces which must be defined by standards and handled
in processing.

GAPs represent the general purpose processing used by the embedded computer systems.
GAP:s are allowed to be of two forms: one for standard general purpose use [GAP(S)] and one
for multiplexing and demultiplexing signals [GAP(M)]. Typically, GAP devices are used
where response times on the order of seconds to tens of seconds are required. An example
of a compliant implementation of GAP(S) processors is the Standard Data Processor (SDP)
in the Space Station Freedom program and the General Purpose Processing Element in the
F-22 program. An example of a compliant implementation of the GAP(M) is the Multiplex-
DeMultiplex (MDM) processor in the Space Station Freedom program.

SAPs represent the special purpose processing which is usually needed in high power
embedded computers; these could be implemented by devices such as vector or associative
processors, massively parallel data processors, or arithmetic coprocessors. Typically, SAP
devices are used where response times on the order of hundreds of milliseconds to a second
are required. Examples include the associative and vector processors used in the F-22

program.

SpIEpUElS 30€)IA)U] TemMpIel 0} arempieH JVO ‘€1-¢ 2ndig

spispumg ; : ¥ ; Sty : spivpumg
: LRI
yomeN
®10)
. : HEE I (‘218 1808
]0198|] . C , : : SR o spiepueig
spivpung : o = : 3 LRV
eosjIequ| T . e E N N) .
Joluon :
O®PIA
spispung i &
(2L YT Jiy _ S . B [spispuvis
sng Bujw R i Lo e L e : edsjieju)
spispumg Fuuii S i e e R R R SR sw.n»m
oowji0qu| TS : SROR IR . TENTES = CH TR e
suopauny LR - . LR
jeuopndo 3 :
spispumg
e3ujie)u|

sng 8207

108882014 $2|UOJAY [RIBUED

23-10

2IMPANYIIY S[UoAY uad(duauar) aoedg e 10j sadeyI] pue
3INIIANIYIIY dIeMPIeH [ewrdixy Surssador duIauan) “p1-g amSyy

FOVIHIAUN
TaVYNIJ3Ia HISN
ANd1INO/INdNI @

SHO0103443 SHOSN3S

SIHIVHO ¥ 03MNIA

(.son1d. 0) @
8¢<nz<..uuo<uzm§_

Bl
§ SRR

R

11

Within each sensor or effector, this architecture allows, but does not require, the placement
of processors embedded in the sensor or effector unit. An EP can be one of two forms: one
for effector processing [EP(e)] and one for sensor processing [EP(s)]. These embedded
processors provide the very high speed processing to manipulate and convert analog data to
digital data while performing some preprocessing on it to reduce the data rate to a more
acceptable level for linkage back to the GAP(M). Typically, EP devices are used where
response times on the order of milliseconds or less are required. Where the data rate with
the sensor or effector is acceptable to the GAP(M) and no other pre-processing is required,
direct interface to the GAP(M) may be used. Sensors and effectors interface to the EP devices
either through local communication interfaces or through direct links.

Lower level interface standards are used to define the options available in implementation
for the core networks, local communications, GAP to EP direct links, GAP to S direct links,
GAP to E direct links, EP to S direct links, and EP to E direct links. User definable interfaces
are provided for the SAPs. Lower level video and graphics interface standards are used to
define the options available in implementation for connecting the GAP devices to humans
for development, operation and maintenance of the systems.

The standard system architecture such as used in the Space Station can be overlaid with the
POSIX OSE interfaces, as shown by example in Figure 2-15. This is another way of looking at
the use of the OSE model. SDPs, MDMs and the Sensor and Effector Embedded Processors
are the host computers for the Application Platform and its services, as well as the
Application Software. Communications from the SDPs over the core network, local buses
and direct communications links are communications to other standard processing
elements, hence are external interfaces. Communications within each processor (whether
the SDP, MDM SP or the EP) is an internal interface (the API).

2.3-12

CORE NETWORK

EXTERNAL
ENVIRONMEN STANDARD
INTERFACE DATA
{EEI) PROCESSING
MULTIPLE LOCAL BUSES
APPLICATION
PROGRAM
INTERFACE
(API1)
MULTIPLEX
J DATA

PROCESSING

SENSOR &
EFFECTOR
PROCESSING

SENSORS EFFECTORS

Figure 2-15. POSIX Open System Environment Interfaces Applied to a Station Example of a
Standard Hardware Architecture

2.3-13

2.3.2.1.3 Generic Processing Internal Hardware Architecture Model

Figure 2-16 presents a GAP architecture that is capable of being configured to satisfy the
requirements for general purpose processing elements in a spacecraft. The generic
hardware elements shown in the figure comprise the basic, generic hardware modular
elements in the SGOAA. The processor may be configured as a GAP(S) or GAP(M) as
illustrated in Figure 2-14 depending on the set of available functions required for the
specific application. The SAP is a special purpose case and may require functions not
included in the generic processor function set such as vector or parallel processing.

The GAP function set is a shopping list of modular functions which can be used to build the
needed configuration. Each module provides a specific independently procurable service.
Additional unique service functions may be added by defining additional modules. The
actual implementation in hardware is interface standard, technology and detailed design
dependant. System performance requirements for hardware modular elements shall be a
primary consideration in module selection to perform a specific function.

System Fault Detection, Isolation and Recovery requirements for hardware modular
element BITE shall also be considered in hardware modular element selection. Specific
hardware interfaces that are candidates for standards are shown in the figure. If modules
interact, specification of the interface between modules may be standardized or non-
standard. Interfaces between modules are processor internal interfaces. Standardization of
the internal interfaces provides portability and interoperability of the processor modules.
Certain interfaces between modules for special processing functions may be quite
specialized, complex and varied and as such may not be standardized.

Backplane bus interface standards shall be imposed to provide modularity with the
capability for technology upgrades and multiple vendor sources of processing functions
modules. Although only one bus is shown for the backplane in Figure 2-16, the actual bus
implementation may consist of multiple buses depending upon the specific application.
Possible buses include data, time, test, and local memory. Multiple standards exist for all of
these bus types. Bus interface standards provide for cost and schedule savings by using a
predefined standard interface as well as making common bus interface hardware useable in
all system processing elements. Use of Backplane Bus Interface Standards first requires
identification of the backplane bus function to be performed; in this case, the function
shown is the connection of processing elements across the backplane of a single board

23-14

computer. Similar type savings can be achieved by implementing standards for the other
interfaces labeled in Figure 2-16.

Lower level interface standards should be selected for network, test and checkout system,
mass memory, timing bus, discrete data, analog data, serial data, parallel data, local bus,
video/graphics, audio and optional functional growth interfaces. For example, to
implement the functions of the basic GAP(S) shown in Figures 2-13 and 2-14 would require
implementation of the network processing, application processing and local
communications (e.g., buses and I/0) processing functions of the GAP Hardware
Architecture shown in Figure 2-16. A backplane bus standard such as Future Bus Plus
(FB+), VME or Pi Bus would be imposed as the backplane data bus standard. The backplane
bus standard used in a specific architecture implementation might consist of one or more
specific buses; separate buses are permitted for uses such as test and maintenance.

2.3.2.2 Class 2 - Hardware-to-System Software Direct Interfaces

Hardware to system software interfaces are shown in Figure 2-17. These interfaces consist of
the interfaces from the system software drivers (i.e. in the OS, data system manager, etc.) to
the hardware instruction set architecture (ISA) and register usage. With regard to the
model it is internal to each processing element. The hardware elements are grayed out to
show that these elements are a repeat of the previous figure; the black elements represent
the new capabilities and interfaces added by this interface class. This class defines the
interfaces for low level software drivers that interact with the hardware for each of the
processor types (EPs, SAPs, and GAPs). The drivers are hardware dependent, but this
enables the architecture to begin to partition out the hardware dependencies, which is a key
in providing for technology upgradability in the future. All the drivers for all processor
types are contained in the SDSS sub-architecture.

23-15

[9POJN IMIIMYDIY dTeMPIBH [Euld, -, SUISsI0Id sudaudn) 91-g am3yy

spapims i ..IE:o.._Ew _-Eoimut-ucaom |

SI0898201d "8 ‘RINSN ‘10jisind
Ajoaissuly ‘oApjo0seY ‘101907

SIUMYOS PUS SMDIH
Bujesed0id 0/ | peTiejoeds

SI0MYOS PUS SIMMPIH
o4jjoedg sojydesp) pus oepiA

IR RS RS 3S,

(10r0ueB swipy “B°0) siemyjos
PUS SJBMPISH 2jjjoeds
~LMOJP [suUoROung jeuopdo

spi§ j9|Boy/Bujssedscid
uojieios| 8inoseH

pus uopsinbay veq uopaungy uopinqiisiq vea

spiepue}s ao8le!
ouavcs_wcﬂwuu.ﬂ W 4 /| weiboid uopeajiddy pisp SM:_EMJE_
uopdwnsuo) esinosey Hed uojeayiddy uojssii uopdwnsuo) 3i1n0seYy

- u:_uowooi :o_io__&<
Nn.J 5 (" %m.

(N 10 mv 1088990id 89|UOJAY |elousy)

16

The system services software for the GAP are organized into five categories, as discussed in
more detail in section 3. This categories are the Data System Manager, Data Base Manager,
Standard Data Services Manager, Operating System, and Network Services Manager. The
software drivers for the SAP are organized into four categories (preliminary): input/output
(I/0) formatting, normalization, specialized processing interfaces, and local
communications interfaces. The software drivers for the EP are organized into four
categories (preliminary): BIT, hardware handler interfaces, local communications interfaces
and microprocessor execution control. Note the naming convention between Figures 2-17
and 2-18. Interfaces identified in Figure 2-17 are labeled with a name (e.g., GAP-DRVR for
the GAP hardware to service drivers), and then these named interfaces are exploded in the
next figure (e.g.,, GAP-DRVR-OP, GAP-DRVR-MEM, GAP-DRVR-TC, etc) by adding a third
name to the first two which identifies the component driver of the interface.

The operating system interfaces needed for the hardware to drivers are identified in Figure
2-18. The interfaces are shown in black and labeled, and everything else has been greyed out
to highlight items of interest.

2.3.2.3 Class 3 - System Software-to-Software (Local) Direct Interfaces

System software to local system software service direct interfaces are the operating system
interfaces shown in Figure 2-19. These consist of the Input/Output handler calling
conventions and context switch conversions between the system software drivers on one
processing element interfacing with one or more system software services to provide for
local information exchange. The grayed out parts of the figure represent the material
covered in Classes 1 and 2, the black parts of the figure are the new material added in Class
3. Since Class 2 provided the software drivers to isolate the hardware, Class 3 provides the
remainder of the direct operating system interfaces to local software services needed to
operate the computer system. All local software services are grouped into the SDSS sub-
architecture, consisting of the Data System Manager, Data Base Manager, Standard Data
Services Manager, Operating System, and Network Services Manager. Class 3 provides the
direct interface between the local services for effective local interprocess communications
and support. These interfaces are direct interfaces because they enable software service code
to interact with software service code in other local entities. Class 3 interfaces meet derived
requirements based on the need of an application to support users.

23-17

199I1(] 3IeMYOG WANSAG-0)-d1empaey Z ssep) Z1-Z 2m31

piepuss eoepieiu) = (1)

NHOMLIN 340D

SNOLLVIINNKNOD TVYI0T
dVvd
(s)uopdg L— ?-:o:ao_
siempIey
(s)uopdo (s)uopdo
- | 1 3
!“..-.-.__h":._ ssed0ig sanjiou)
.-oom onddy Nomie N
L - sed8Ie|u
- Heu|
FUAUT-dVD SHAHCO-dVS MS-MH
eJBM}JoS

jedl|

2.3-18

s19AH a1xempaey waysdg JuneradQ 03 gy 'g1-z 2y

SPIS edwLIe|U|

Lo T T
Ol-UAHG-dYO ol)

dO-HAHG-d VD

P18 edsliaiu)
SNS-UAHA-dYD
» 3

Sompal suseju)
1dO-HAUC-dVO

sioAlQ
edepeU|

v U

19

)

S28JIAU] 10311(] AIBMYOS-03-DIBMYOS WIANSAS € S88[) *61-7 aIndyy

JHOMIIN FHOO

SNOLLYJINNIMNOD 1¥201

2320

The operating system interfaces needed to implement system software-to-system software
direct interfaces are identified in Figure 2-20. The interfaces are shown in black and labeled,
and everything else has been greyed out to highlight items of interest. Note that there are
two types of interfaces: upward between the operating system services to any software
application (including other data system services), and downward to the drivers within the
operating system. The naming conventions (previously described) of using two
concatenated names for the higher named interface in the first figure, and three
concatenated names for the explosion path in the second figure, are also applied here.

23.24

System software services to remote system software interfaces are shown in Figure 2-21.
This is the peer to peer interface of system software in one processing element (GAP,SAP or
EP) interfacing with the system software in the same processing element or in an external
processing element to coordinate operations in a distributed environment. The grayed out
parts of the figure represent the material covered in Classes 1 to 3, the black parts of the
figure are the new material added in Class 4. Since Classes 1 to 3 isolated the hardware and
software services in each processor, Class 4 adds the interface capability for services in one
processor to interact with services in another processor; this is the heart of multi-processor
capability needed in modern space avionics systems. EP services can interact with SAP and
GAP services; SAP services can interact with GAP services; GAP services can interact with
EP and SAP services and other GAP services. These interfaces are logical interfaces because
the service originating data is interacting with the service that will use the data (i.e., that
will transform the data into another form for a purpose). Class 4 interfaces meet derived
requirements based on the need of an application to support users in a multi-processing

environment.

2.3-21

sadey1au] wAlsAg Sunesad -0z-z a3y

RIS eouMN
QIA-MS-80
Mg sovpnLy
N3N-M8-80

Spig eOBLIeILY
OI-M8-80

(s10ApQq) 92e O U|

SERINVETS uoisuaixy SO/MH
wiaysAg

bunetadp

Spi§ eduLieLy
ASN-MS-80

P soujieNy
NB3G-M8-80 sPIs soulieNy

WSas-Ms8-s80

SPig SoujINIY
NSA-MS8-80

SIS sovlNY
dd¥-M8-80

suonesijddy

23-2

§308J3] [€J1307] 31eMYOS WAISAG-03-9IeMYOg WSAS ¥ 858D *[Z-T 33l

FHOMLIN FHOOD

eBsusy

seojaleg
9ea

piepung

SNOILVOINORIROD T¥YD0T

(1
piepugs ovepeu) = ()

23

The data system services interfaces needed to support local operations and logical access to
other GAP data system services are identified in Figure 2-22. Although this diagram is busy,
a little study will reveal the underlying pattern. The black-line interfaces are the primary
interfaces between the local services. Local services and remote services have a common
logical architecture. Also, shown in Figure 2-22 is a circular interface between each service
entity and itself, since each service must be able to communicate with remote versions of
itself in other nodes. Finally, there are remote interfaces to the special avionics processor
and the embedded processor services not illustrated in this figure. The naming
conventions (previously described) of using two concatenated names for the higher named
interface in the first figure, and three concatenated names for the explosion path in the
second figure, are also applied here.

23.2.5

System software services to applications software interfaces are shown in Figure 2-23. This
is the direct interface within a processing element between the application software and the
system software (language bindings/specification) to allow provision of needed services.
The grayed out parts of the figure represent the material covered in Classes 1 to 4, the black
parts of the figure are the new material added in Class 5. Since Classes 1 to 4 isolated the
hardware and software services in all the processors, Class 5 adds the interface capability for
services in any processor to interact with an application executing in the processor. This

provides the basic multi-processor capability to meet actual user requirements in processing.
Applications can operate in any GAP, with potential partitioning of an application across
multiple GAPs. Similarly, applications can operate in any SAP or any EP. These interfaces
are direct interfaces because the applications software code is interacting with the service
software code. Class 5 interfaces meet derived requirements based on the need of an
application to support users in a multi-processing environment.

23-24

S3D1AIIG JOWdY 10 JAYI)) O} SANAIIG SSAS "TT-T 31y

spiIS eovueIY|
Jejj043uo0) WNSQS-03-AUusSd3 ie]j043u0)

uopnoexy [— uojinoexsy
WNSAS-03-AHSdYS dvs

spevy spouey =
seanpioyy [vo07 = NN

SPIg edujielu|
NSLIN-NSLIN-AUS

spis sowpejuj

NSAS-SO-AUSdYD SPIg sovpielyy

SO-WSLIAN-AUSdVO

. spiS sovpieu|
./ NSAS-NSLINAUSIVD

spiS eowpeu)
WSAS-WSAS-AUSJVD

N
SIS eoRMIO)Y| :

WSAS-WEa-AUSIVD spig eoupeu / \
SO-WE@-AUSJVD .

SPIS eoupIelY

SO-NSA-AHSJVD

oB.m [=P T 8PS edvpe U
WNSL3IN-WEG-AHSHVD wnm.zmn.>cmu<ﬁ. ‘

SPIS eompely
NSC-NEG-AHSdVD

SPIS edvpIeju|
NSA-WSTAUSdVYD

SPIS edvaIY)
WEG-NBa-AHSHYD

23-25

sadejIau] 3031 d1emyos suonedyddy-01-a1emyog wishg G ssep) °gg-7 M3y

NHOMLIN AHOD

BSMOILLYIINAWNG) Y207

AHVM
aHVvH
S3AJIAH3S
MS
sedwjiou| S8IBjA0U) , UMOYS 10N
dd¥-AH8dVYO suofjeaiiddy peseg-dys pue 43

ddVv-AtSdvD

sAsqns
jouo)
peojfed

sAsqng
[o5u0)
IND

elem)jos suojiudjiddy peseg-dvd

jonuo) Eo.u>un=.m \ “shsqn
% Aeids|q 1053u09) sAsqng sAsqng _ozuow
meli suopeiedQ jonuo) lonjuod s13

odedsg

suonedddy 0] SeJIAle piepunis eospoiul = @

23-26

The services to applications interfaces needed are identified in Figure 2-24. The interfaces
are shown in black and labeled, and everything else has been greyed out to highlight items
of interest. Note that all applications can be represented by one bubble since there should be
a standardized method of access to the data system services which is a function of the
service and is independent of any one application. The standard data services manager
shall be capable of providing access to other services as well as directly to the application or
sensor providing the source of data. The data system manager shall be capable of providing
control interfaces to other control subsystems. The naming conventions (previously
described) of using two concatenated names for the higher named interface in the first
figure, and three concatenated names for the explosion path in the second figure, are also

applied here.

Applications software to applications software interfaces are shown in Figure 2-25. Thisis a
peer to peer information exchange and coordination interface between application software
modules. Applications may not communicate directly. All application to application
software communication must be implemented by use of system services software. All
communication is through a Class 5(P) standard interface to System Services which
provides the direct communications path between applications. This interface may be
between applications within a processing element or between applications in separate
processing elements. The grayed out parts of the figure represent the material covered in
Classes 1 to 5, the black parts of the figure are the new material added in Class 6. Since
Classes 1 to 5 isolated the hardware, software services and applications in any processor,
Class 6 adds the interface capability for an application in any processor to interact with
another application executing in any processor. Applications can operate in any processor
(i.e., GAP, SAP or EP), with cooperating interactions to support the needs of the users. This
interface is a logical interface to establish the requirements for information exchange from
one application to another, i.e., the application originating data is interacting with
applications that will use the data (i.e., that will transform the data into a form useful to the
user or to another application for a user's ultimate purpose). Class 6 interfaces meet user
and derived requirements based on the need of multiple applications to support users in a
multi-system environment.

2327

sadeyiaqu] suopedyddy 03 sadjardg “pz-z 2y

sajdwexy

Jebeuep
S9JIAI0S
BleQg
piepuels

!

isapduwexy
SpiS edulIeu| Sp)g edsujielu|
WSAS-ddV-AUSdVD NSQ-ddV-AUSdVD
. A

__aaemyos uopeoyddy >

23-28

saoejIau] @130 AIeMYOS suopedijddy-o01-91emMyos suonyeoyddy 9 sseD

‘gg-g am3y]

prepueals el =

®

23-29

Applications to Applications interfaces can also include interfaces between applications in
two different systems or vehicles. Thus, System A applications software to system B
applications software interfaces are shown in Figure 2-26. This is the interface for exchange
of information between the space avionics system and another avionics system for overall
command and control. This interface is at the mission level and may be an information
exchange between the ground or between separate space vehicles. The grayed out parts of
the figure represent the material covered in Classes 1 to 6 (within one system), the black
parts of the figure are the unique material added to Class 6 for inter-system interfacing.
Since Classes 1 to 5 isolated the hardware, software services and applications in any system,
Class 6 adds the interface capability for an application in one system to interact with an
application executing in another system. Class 6 interfaces shall meet user and derived
requirements based on the need of multiple applications to support users in a multi-system
environment, comprising multiple systems, facilities or vehicles. Applications can operate
in any system's processor (e.g., the Mission Control Center GAP or workstation) to
cooperate with applications in another system'’s processor (e.g., the Lunar Transfer Vehicle
GAP). The interfaces are logical interfaces because the application originating data is
interacting with applications that will use the data in another system, facility or vehicle (i.e.,
that will transform the data into a form useful to the user or to another application for a
user's ultimate purpose). Class 6 interfaces meet user and derived requirements based on
the need of multiple applications to support users in a multi-system environment. They
meet the overall mission and operational control requirements across multiple facilities
and vehicles. With regard to the hardware architecture, the communication gateway might
be a SAP configured as an RF Communication Processor or a SAP configured as a Network
Gateway.

sadeyIAU] [eL30] dIem)
[Jog g wdshg-01-0IeMY0
g v waishg 9 ssed
97-C w.gw_m

i :ro...w oMy

suopuiedQ
ededg

31

24 SGOAA RELATIONSHIPS TO POSIX

As discussed in 2.1.3.1, the top level standard within which the SGOAA was designed to fit
is the POSIX OSE Reference Model. The SGOAA extends the POSIX Model beyond the basic
objectives of application software portability at the source code (API) level and system
interoperabiity and data portability at the EEI by defining the POSIX interfaces in terms of
five SGOAA interface classes (the sixth SGOAA class, Class 2 is an internal interface only),
addressing certain Application Platform internal interfaces and recommending additional
data system services software specifically applicable to space based systems. User interface
look and feel as addressed by POSIX is not presently addressed in the recommended SGOAA
standard. The SGOAA is at present primarily oriented toward space based data systems. It is
planned that user interfaces be included as a future update.

The POSIX model does not address Application Platform internal interfaces as does the
SGOAA. The rationale given in [POSIX91] is that these interfaces have no direct impact on
the external interface of a system or the application program interface to the system. System
Internal Interfaces are beyond the direct scope of POSIX because they do not directly impact
application portability or system interoperability. In addition, there is very little consensus
on the partitioning of the platform into components and the consequent allocation of
functions to each. In fact, as stated by [POSIX91], this aspect of system design is in a constant
and accelerating state of innovation and has been for decades. One of the major objectives
of the POSIX API is to decouple the application software from the constantly changing
platform. The internal interfaces are not visible to the application software at the APL

Section 2.4.1 provides an overview of POSIX with regard to the SGOAA and section 2.4.2
discusses the relationships of the SGOAA interface classes to POSIX. Figures 2-2 and 2-11
illustrate these relationships. Recommendations are also made with regard to the

development of interface standards and to the development of generic open architecture

specifications for certain additional Application Platform Language Independent Services.

2.4.1 POSIX OVERVIEW

24.1.1 Application Platform
The Application Platform as shown in Figure 2-11 provides services at the interfaces that,

as much as possible, make the implementation specific characteristics of the platform
transparent to the application software. All application software entities must access all
platform resources via service requests across the Application Platform Interface (API).

241

Examples of Application Platform elements could include an operating system, a real-time
monitor program and all hardware and peripheral drivers. Also included are the SGOAA's
Data System Manager, Data Base Manager, Network Services Manager and the Standard
Data Services Manager which fall under the category of POSIX Language Independent
Services. Application Platform internal interfaces are outside the scope of the POSIX model.
The SGOAA defines parts of Class 1(P), 2(P), 3(P) and 4(L) as Application Platform internal
interfaces.

2.4.1.2 Application Program Interface (API)

This is the interface between the application software and the application platform across
which all services are provided. It is defined primarily in support of application portability,
but system and application software interoperability also are supported via the
Communication Services API. The API as defined in POSIX consists of the following parts:

e Communications Services API

¢ Information Services API

¢ Human/Computer Interaction Services API
¢ System Services API

The POSIX Communications Services APL, POSIX Information Services API and the POSIX
System Services API are required to provide the application software with access to services

associated with each of the external environment entities.

2.4.1.2.1 POSIX Communications Services API

The POSIX Communications Services API is concerned with the interfaces and associated
standards that apply to the interface between the application software and the application
platform for the provision of communications services to the application software. POSIX
is in the process of developing several standards to address this interface. In the SGOAA
Standard Data System Services Architecture the provision of communication services is
assigned to the Network Manager. This is a SGOAA Class 5 interface.

242

2.4.1.2.2 POSIX Information Services APl and EEIl

The POSIX Information Services API is concerned with both Database Management and
Data Interchange Services.

A. Database Management Services are provided in the SGOAA by the Database
Manager. For portability and interoperability, an application using a database
must be isolated from the hardware and software retrieval methods as much as
possible. The Database Manager provides services to the Application Program
via the Data base APl. There are currently four database standards, either
completed or under development.

B. POSIX Data Interchange Services provide specialized support for the exchange of
data between applications or components of applications. Data interchange
standards should define direct formats, data formats, code sets, and data
descriptions that are consistent across all implementations of the POSIX Open
System Environment to ensure that data can be exchanged between related
application software. Data Interchange Services are provided in the SGOAA by
the Standard Data Services Manager. These services can be divided into Data
Interchange Service API and Data Interchange Services EEL

(1) The Data Interchange API provides an interface from the Application
Software to the Application Platform for requesting that specific data be
transferred using the EEI services. Little work has been done in developing
standards for this interface. No general standards presently exist. This is a
SGOAA Class 5(P) interface.

(2 The Data Interchange EEI provides an interface from the Application
Platform to the EE to support data interchange for storage and retrieval of data
using the formats and protocols provided at the Data Interchange EEL

Standardizing character sets and data representation is crucial to providing
effective data interchange between application software operating under
differing language and cultural conventions (internationalization).
Standardizing data format protocols protects applications from hardware
and/or software differences between environments by ensuring that data
remains stable when moving between environments. Data format protocols
are fairly well standardized and offer several general standards. This is a
SGOAA Class 1(P) interface.

243

Standardizing data description protocols provides the ability to share data
between related applications, even if they were not specifically written to
cooperate. To date, most standards in this area have limited themselves to
specific application areas and no general solution has been provided. This is a
SGOAA (Class 4 (L) interface.

2.4.1.23 POSIX System Services APl

The POSIX System Services API provides access to the platform internal resources and via
the POSIX EEI Communications Services API to the internal resources of other platforms.
In order for the platform to protect system integrity and ensure system database consistency,
the application software must access all system resources via system service requests. The
formal definition of these requests defines the system services portion of the APL The
resources provided may be divided into two types of specifications; i.e., Language Service
and System Service Specifications. These specifications are defined as follows:

A. POSIX Programming Language Specifications - Defined by POSIX as the

specifications associated with the language such as program control, math
functions, string manipulations, etc. A consistent interface to the operating
system is essential for applications portability. In addition, the application should
be developed using language supported by a standard (preferably international)
and system development tools such as a language certified compiler to achieve
source code portability. The SGOAA does not address this specification type.

. Language-Independent Service Specifications - Consists of POSIX defined services
provided to the application software by the underlying application platform
internal resources and independent of any programming language. Examples
include interprocess communications, interobject messages, access to the user
interface, and data storage. Specifications for these services are defined
independently of any programming language, and are identified as language-
independent service specifications. SGOAA defined services expand this
definition and add the Standard Data Services Manager and the Data System
Manager. The Standard Data Services Manager is the system services interface
from the Applications Platform to the Applications Software for all Application
Platform Services. The functions of the Data System Manager are discussed by
POSIX under Information System Management and are categorized as an OSE
Cross-Category Service. Cross-Category Services are those that may influence
and/or impact other parts of the POSIX architectural building blocks.

244

The three additional SGOAA SDSS Managers (Network, Database, Operating
System) defined by the SGOAA are addressed by POSIX and partitioned to other
parts of the APL. The SGOAA Database Manager is addressed by POSIX
Information Interface Services and the SGOAA Network Services Manager by
POSIX Communications Interface Services. The Operating System is addressed by
System Services. The purpose of the first in a set of planned POSIX standards,
ISO/IEC 09945-1 (IEEE 1003.1) is to define a standard Operating System interface in
order to support application portability at the source level.

The Guide to the POSIX Environment [POSIX91] Section 4.2 discusses the emerging
standards that are being developed to satisfy the system service requirements. With regard
to the SGOAA Interface Model, this API consists of the following two interface classes:

A. The Operating System to Other code (i.e., Services or Applications) is a SGOAA
Class 3 interface.

B. All other System Service Software to Applications are SGOAA Class 5 interfaces.

2.4.1.3 External Environment

The EE comprises the external entities with which the application platform exchanges
information. These entities are classified into the general categories of human users,
information interchange components and communication components.

2.4.1.4 External Environment Interface (EED

The three services present at the EEI are Communications Services, Information Services,
and Human/Computer interaction Services.

2.4.1.4.1 POSIX EE! User Interface

This is the boundary across which physical interaction between the human being and the
application platform takes place. Example services across this interface include CRT
displays, keyboards, mice, and audio input/output devices. This is a SGOAA Class 1 (P)
Interface.

245

2.4.1.4.2 POSIX EE! Information Interface

This is the boundary across which external persistent storage service is provided, where the
Data Description Protocols and Data Format Protocols are required to be specified for data
portability and interoperability. This is a SGOAA Class 1 (P) Interface where Data Format
Protocols are a hardware function. Data Description and Data Format Protocols (software)
place this interface into Class 4 (L) for System Software-to-System Software
communications. Data Description Protocols place this interface into Class 6 (L) for
Application-to-Application communications.

2.4.1.4.3 POSIX EEI Communications interface Services

This is the interface that provides access to services for interaction between internal
application platform software entities and application platform external entities such as
application software entities on other application platforms, external data transport
facilities, and devices. The services provided are those where protocols and formats must
be standardized for interoperability.

This hardware-to-hardware direct interface is a POSIX EEI interface and a SGOAA Class 1 (P)
interface. The standards at the EEI will be in several areas such as physical connections,
network protocols/formats and distributed system services. Much standardization work
has gone into the aspects of networking that are available at the EEI. The standards selected
at the EEI will impact system interoperability, but may also have an effect on application
portability, because certain applications may require particular types of network access to
function.

The interface from the software driver to the communication hardware (Hardware-to

System Software Direct) is an Application Platform internal interface defined as an SGOAA
Class 2 (P) interface.

24-6

Table 2-9. SGOAA Relationships to POSIX

POSIX SGOAA CLASS
INTERFACES 1 (D) |2 (D) 3(D) | 4()

|

(2
C

6 (L)

API:

System Services X

Communications Services

Information Services

] > ¢ >

User Services

Communications Services

X
Information Services X X X
X

User Services

AP Internal:

Backplane Bus X

System SW to System SW X X

HW to System SW X

2.4.2 SGOAA INTERFACE CLASS RELATIONSHIPS TO POSIX

The POSIX OSE Reference Model is the top level standard within which the SGOAA must
fit. Table 2-9 shows the SGOAA Interface Class relationships to the POSIX Model interface
definitions. The following paragraphs discuss the rational for establishment of these

relationships.

2.4.2.1 Class 1 Hardware-to-Hardware Interfaces (DIRECT)

SGOAA interface definitions and standards requirements identification activity are not
recommended to be limited to only those interfaces defined by the POSIX model. Hardware
modularity and portability in addition to the application software portability and
interoperability addressed by POSIX should also be considered. In order to provide
programs access to multiple sources of hardware components and to enable maintainability
and technology upgrades of application platforms over extended life cycles, especially in the
case of space avionics, it is recommended that the Application Platform internal hardware
interface standards for the SGOAA Class 1 "Backplane Bus” interfaces shown in Figure 2-16
be imposed. These standards should not be imposed to place unnecessary constraints on the
platform design, rather they should be imposed to require vendors to select a bus that has

247

platform design, rather they should be imposed to require vendors to select a bus that has
wide industry support. The Network Interface, Local Communication Interface, and the
Sensor/Effector interface shown in Figure 2-12 are all SGOAA Class 1 interfaces and fall
within the definition of POSIX EEI Communications Services interfaces. It is recommended
that standards be established for the following SGOAA Class 1 interfaces:

¢ Backplane Bus (Application Platform Internal Interface)

¢ Network Interface (POSIX Communications EEI)

¢ Local Communication Interface (POSIX Communications EEI)

¢ Special I/O Processing - Sensor/Effector (POSIX Communications EEI)

It is not recommended that an interface standard be applied to the Instruction Set
Architecture (ISA) as shown in Figure 2-16 (Application Processing Logical Standards). The
technology is changing too rapidly and imposing such a standard would place undue
restrictions on the design of the application platform. Compliance to POSIX and an
approved "Backplane Bus" standard will enable selection of the best ISA Standard
implementation to satisfy system requirements and also achieve the hardware
maintainability, upgradeabilty and portability objectives.

POSIX EEI Information interface Data Format Protocols are a Class 1 interface where
implemented in hardware.

The POSIX EEI User Interface is the boundary across which direct interaction between the
human and Application Platform takes place.

24.2.2 Class 2 Hardware-to-System Software Interface (DIRECT)

This interface is that of the Operating System (OS) binding of the hardware driver software
to invoke platform services as shown in Figure 2-18. It is an interface internal to the
Application Platform. The Standards for this interface can be separated into the OS
Standards and the Hardware Interface Standards for a specific hardware implementation.
The hardware interface standards referenced in Class 1 must be definitive as to the software
driver interface requirements needed to communicate with that hardware. Each OS
Specification/Standard must specify the software interface binding requirements for
"plugging” a driver into the OS. POSIX defines this interface as a "Layering" or Redirection"
service. It is recommended that a interface standard be developed for the OS binding to

2438

software driver side of this interface. Defining a standard for this interface is not presently a
part of the POSIX standardization activity.

2.4.2.3 Class 3 System Software-to-Software (Local DIRECT)

This interface is included in the POSIX AP], the interface between the Application Platform
and the Application Software against which all platform services are requested and
provided. It is defined primarily in support of Application Software portability.

The System Services API provides access to services associated with the Application
Platform internal resources. The System Services API is classified as a SGOAA Class 3
interface as illustrated in Figure 2-20 as the Application Software has a direct direct interface
to Operating System Services. This distinction is made since the SGOAA architecture
separates Operating System Services (SGOAA Class 3) from other System Services (SGOAA
Class 5). SGOAA Class 3 is also classified as a POSIX Application Platform Internal Interface
due to System Services Software having a direct direct interface to Operating System
Services.

2.4.2.4 Class 4 System Software-to-System Software Interfaces (LOGICAL)

This is the internal interface for transfer of data between Application Platform Language
Independent System Services as illustrated in Figure 2-22. It is recommended that an
interface standard specifying data description protocols be developed to provide Language
Independent System Services data portability and interoperability. This is also the external
logical interface between Language Independent System Services on the Application

Platform with Language Independent System Services on other Application Platforms. For
example, this is the logical interface between the Data Base Manager in a Application

Platform communicating with the Data Base Manager in another platform. An example for
the Space Station Data Management System (DMS) is a user requesting a file transfer by way
of the RODB in a Standard Data Processor (SDP) which requests the service to be performed
by the file transfer server in the Mass Storage Unit (MSU).

POSIX EEI Information/Data Interchange Services data description protocols are defined as
SGOAA Class 4 for data interchanges between System Services Software both within and
between Application Platforms. These services provide the ability to share data between
related System Software entities, even if they were not meant to specifically cooperate.

249

™
~

Building upon the Data Format Protocols and Character Sets and Data Representation
Protocols defined as Class 1, these data description protocols provide a means of associating
a name or other identifier with the individual data elements in a standard manner. Most
standards developed in this area have limited themselves to specific application areas with
no general solution provided.

2.4.25 System Software-to-Application Software Class 5 (DIRECT)

The SGOAA Class 5 Interface is shown in Figure 2-24. This interface is the POSIX API, the
interface between the Application Platform and the Application Software against which all
platform services are requested and provided. It is defined primarily in support of
Application Software portability. System and Application software interoperability are also
supported by the Communications Services API. There following four APIs are in this
POSIX interface:

¢ System Services API
¢ Communications Services API
¢ Information Services API

¢ Human/Computer Interaction Services API

All of the preceding API's are SGOAA Class 5 interfaces. The System Services API provides
access to services associated with the Application Platform internal resources and the other
three APIs provide the Application software with access to services associated with each of
the EE entities. The System Services API is also classified as a SGOAA Class 3 interface as
the Application Software has direct direct interface to Operating System Services. This
distinction is made since the SGOAA architecture separates Operating System Services from
other System Services.

2.4.2.6 Class 6 Application Software-to-Application Software (LOGICAL)

2.4.2.6.1 Local or Node Applications Software Interfaces

Figure 2-25 illustrates SGOAA Class 6 . This is the internal interface for transfer of data
between Application Software within an Application Platform and as such is a POSIX
Information Services API interface. This is also the external logical interface between
Application Software on the Application Platform with Application Software on other
Application Platforms and as such is a POSIX Information Services EEI interface. It is

24-10

recommended that interface standards specifying data description protocols be developed to
provide Application Software data portability and interoperability.

POSIX EEI Information/Data Interchange Services data description protocols are defined as
SGOAA Class 6 respectively for data interchanges between Application Software both
within and between Application Platforms in the same system and in external systems.
These services provide the ability to share data between related Application Software
entities, even if they were not meant to specifically cooperate. Building upon the Data
Format Protocols and Character Sets and Data Representation Protocols defined as Class 1,
these data description protocols provide a means of associating a name or other identifier
with the individual data elements in a standard manner. Most standards developed in this
area have limited themselves to specific application areas with no general solution
provided.

2.4.2.6.2 System-to-System Applications Software Interfaces

As shown in Figure 2-26, this is the external logical interface between Application Software
on an Application Platform in a system with Application Software on other Application
Platforms in external systems and is a POSIX Information Services EEI interface. It is
recommended that interface standards specifying data description protocols be developed to
provide Application Software data portability and interoperability.

POSIX EEI Information/Data Interchange Services data description protocols are defined for
data interchanges between Application Software running on a Application Platform in one
system with Application Software running on Application Platforms in one or more
external systems. These services provide the ability to share data between related
Application Software entities, even if they were not meant to specifically cooperate.
Building upon the Data Format Protocols and Character Sets and Data Representation
Protocols defined as Class 1, these data description protocols provide a means of associating
a name or other identifier with the individual data elements in a standard manner. Most
standards developed in this area have limited themselves to specific application areas with
no general solution provided.

2411

3. THE SPACE GENERIC OPEN AVIONICS ARCHITECTURE APPLIED

Development of the architecture reference system model, hardware model and interface
class model were discussed in Section 2. Development of lower level detailed SGOAA
functional architectures is discussed in this section. Development of the SDSS Subsystem
and SOCS functional architectures were parallel tasks. Each nourished and provided reality
to the other. The following ground rules were established for the functional architecture
developments:

¢ The architecture analysis will be based on mission needs in an integrated approach.

e The architecture must be an open generic architecture that can be applied to multiple

space missions and programs.
e An open architecture should be applied down to the module level where possible.

* The architecture must be a modular architecture in which the elements are
autonomous, coherent and organized in a robust structure. Robustness is the ability of
systems to continue functioning under abnormal conditions.

¢ The architecture must provide systems with the extensibility to be extended or adapted
to new conditions, changes in specifications or new technology.

¢ Differentiation between processing levels will be based on the philosophy of
"Centralized Command and Decentralized Execution".

e The architecture must be a "shopping list" of all processes applicable to any space vehicle
or other planet base.

¢ This architecture will be compatible with the avionics software POSIX OSE Reference
Model.

With regard to the OSE Reference Model [PRU%0] and [POSIX91], there are three types of
entities used in the OSE model: Application Software, Application Platform and External
Environment. The four types of interfaces defined in the OSE are user, information
exchange, communications, and processing. Definitions of the OSE entities and interfaces
are discussed in Appendix A of this document. The six classes of SGOAA interfaces
described in Section 2.3.2 of this document titled "Architecture Interface Model Description”
are referred to throughout this section.

3.1-1

This section discusses the development of the Space Generic Avionics (SGA) Core
Functional Architecture using the model described in Section 2.3, describes the detailed
subsystem functional architectures (i.e., subarchitectures) developed and provides functions
and data flows for two of the key integrating subsystems, the SDSS and the SOCS. It also
provides application examples where the SGOAA could be applied to real world space
avionics.

3.1 POTENTIAL SPACE GENERIC AVIONICS FUNCTIONS

The first step in defining space generic avionics functions was to gather together space
platform related processes, events, major data items, and any other information which can
be used to identify logical groupings (i.e., entities) of information handling. These groups of
information define user needs for processes and the related data being processed. Multiple
space program experience of the architecture study participants was used to research Space
Station Freedom and Shuttle sources and identify/document the required data. The results
of this research activity is shown in Figure 3-1, a table of space system user processes
grouped together by subsystem function. These processes are not intended to be a definitive
list of all space processes, but are a functional checklist of processes against which the
subsequent requirements, analyses and the resulting generic avionics architecture can be
compared to determine if all "traditional" space functions are accounted for or -

accommodated.

This functional checklist also suggests some of the partitioning into higher level entities. A
vehicle control entity appears needed to coordinate the subsystem applications operating on
the vehicle and to supervise their activities. This vehicle control system would also
provide a means of human operator coordinated control over all vehicle applications or
operations. It also suggests that another higher level function needed is one of operations
control to coordinate all activities and processing inside the space vehicle with each other
and with outside activities and processes. The operations control layer would also provide
the place for logic "glue" as needed to enable the activities and processes to respond to
external intervention from the crew or remote commanding.

3.1-2

The shadowed elements in Figure 3-1 represent a shopping list of functions required in
present space vehicles (i.e., Space Station Freedom or Space Shuttle) data management or
processing systems. Note that this structure does not correspond exactly to the station
software partitioning, and is not precisely the same as the implied partitioning in [JSC
31000]. The purpose of the structure is to focus attention on data service requirements and
related or ancillary processing requirements.

3.1-3

)

ASTPPAYD suopduny [eHudI0d SOTUOIAY DHIBUID) 3de

dg ‘1-¢ @m3yg

|
;
g

Py ARG @ e uon
P Arking _ A e
weopefio) @ OO VAT @ UDRIUSD
wemis ol
onpmane | PHOWOe IO @ UOWNO & 1 IO
om0 e
) BupRHON ® A oL oaxo
¥ By o Supury O @ 0 ——
uopmd wod e QU @ Bupueh
PO M8 © voupm @ “.qgo Pl oo ™ e YOO
™~ . Mmne wowg Joiy o8 a0 0
weosecy omm. Buuopuc) wdo)
e MO @ o ® H._h: uad @ peds © 10 Aninose » scuemg Xenion @
PrusnLy VOIUD o ot oL Uyl @
Budempemncy @ o aoeq W B00 SunLmm we @ amod @ o N
w00V @ wenle @ » ° wmpdaid UOMMUND woogied) @
vy w— Vogned i e PO shay awod o Bupmm —
wnd o e o000 W anseeld Supuenag U0 ®
~ kazwo e Bupisen o et wouw o L) Buonpo) motoe
aBaog &3 © PakI0D U & ome PUHND @ PR aSupian [W04 &
Ay uon Yasony R0 e Bugung b N T e whveoe a0
SRR @ VO[SV di..u-o ° Wy L LT Y ey) spdey uopndoid @
BURLA N Semiopry © Bupumy ™~ 2N0d D 0 Voo —
En_.iw. B UOpeD ® ™ P oo © kinncony woppe g ® wORN S Aogd e
w * »Ounmd wa oA *» uogmmon uon * mAg o D.i.-__-o.. P
BupmidvAa @ Weie WA » =T .8_1..!5. Bupeoyy P e W &
L) » PN ol lewog @ deumiLwboy oS00
rwei e onnmunn N one) (T 1000 woH oo @ prn/ Y
Pupscind ® » pon) sanwgeie @ o oy seuddng A0
o™ W ™~ sowung woouow @ W0 @ Pugnod) . Bupomicn !ﬂwo
»uomnusS @ ARUBN G houpurowy bov 3L o~y om0 o8 @
e P wwmie YPQDEE O g4 " Bumos Bupsueg pe @ we o
yuon T T pdisy @ []
oniWVAL fppoid @ we UuOWe
‘edp) ‘Ma) R unpis Ao
WU aooqy donwene Wmiose | wasiegng usqeherg | | wewshomg | | oigtecng
friumge oA @ wgdoe HMKODE® N %018 PJUOD mvod jonuo) oo
PRy uoims on0e ouuey)
wasisng | [l ussisgng | [wasdeans | | wessdeans -
wowseBeusyy | Slwowebeuny| Jwewebasy Guppoway oPRPA
suopsiedo wwo)

|
§

314

3.2 DATA AND CONTROL FLOW DIAGRAM CONVENTIONS

The architecture that is described in the following paragraphs is represented by merged data
and control flow entity diagrams. These diagrams are often referred to as process flow
diagrams, which are somewhat different in fact. This architectural discussion will use
bubbles to illustrate and describe the process entities. In the "Hybrid Object Oriented
Structure Analysis" process used to develop this architecture and described in reference
[WRA91], abstracted processes and data are referred to as entities to distinguish them from
the object oriented analysis (OOA) objects. The process entity bubbles may represent either
data processes or control processes. Although referred to as data/control flow entity
diagrams, the bubbles are thought of as entities (with noun names) to clarify that they
encompass more than just data or control processes, and include other requirements more
related to object oriented development as described below:

 Definition of objects is by abstracting the processes and data, and establishing the services
which operate on the data based on inputs to the object.

e Data attributes are defined for each object and similarly for each hybrid approach entity.

e Services are the processes performed as a result of messages received by the object. In the
hybrid approach, services are more system process oriented.

o OOA suggests the use of assemblies which are component parts of an object broken
down into lower level objects; this is similar to the hybrid approach’s structured
breakdown of entities into entities at lower levels or sub-entities.

e The hybrid approach allows only one class membership, namely that higher level entity
which spawns the sub-entity.

¢ Information hiding is achieved in the hybrid approach by defining external interfaces
and services for each entity which are the only access points for that entity.

o In the Hybrid Object Oriented Structural Analysis approach, inheritance is achieved by
defining that the requirements for an entity automatically apply to all lower level
entities. If a requirement does not automatically extend to all lower level entities, then it
would not show up at the higher level, but would only be attached to the lower level
entities to which it applied.

3.2-1

3.3 FUNCTIONAL ARCHITECTURES

Figure 3-2 defines the boundaries of the SGA Core Functional Architecture. The SGA Core
Functional Architecture consists of the avionics systems as a black box surrounded by
external elements with which it interacts. The black box consists of all hardware, software
and other electronics needed to control and operate the space vehicle, and provides the
coordinated functionality for end-to-end processing in handling the information needed to
use the black box's elements, to control its interaction with its environment and to respond
to human commands. The SGA black box provides the capability to meet the top level user

requirements.

Elec Powe!
Control B : Hardware
Subsys & . Subsys

Power
Hardware
Subsys

f R R Propulsio

ELS ST Herdware

| Control §
Subsys /AN

Subsys

Environ
& Life Spt
Hardware

Subsys
Operations
: Control Comm
” Operations . Subsystem 44 Hardware

Science/ Control Subsys

Payload Subsys
Subsys o v

Tracking
Hardware
Subsys

Primary
Avionics

Support
Avionics

Figure 3-2. Space Generic Avionics Core Functional Architecture

Within the black box are the primary functional entities which enable the avionics to
support the mission and sustain the crew. These primary functional entities include the
traditional applications control subsystem entities consisting of Electric Power;
Environment and Life Support; Payload Operations; Guidance, Navigation and Control;
and the Communications and Tracking Control Subsystems. The typical support avionics
are shown with bold outlines, some of which are core avionics and some of which serve
specialized non-core functions. The core avionics functions that are also bolded in the
figure are the SOCS application (which integrates all activities from the traditional
applications control subsystems to serve the crew), the SDSS subsystem (which provides

3.3-1

applications control subsystems to serve the crew), the SDSS subsystem (which provides
data processing and data communications support to all the traditional and operations
control subsystems), and the Display and Control subsystem (which enables the crew to
interface with and direct the avionics). Development of the functional architectures for the
SOCS and the SDSS are the primary focus of this section. Development of a functional
architecture for the crew's Display and Control subsystem is a recommended future task.

The system architecture for the hardware and software components may be merged with
these functional architecture elements to produce the composite architecture diagram
shown in Figure 3-3.

Note that it is not possible to develop such a diagram for the completely generic case,
because some assumptions must be made on decisions such as how many processors are
needed and how functionality is to be allocated among the processors. Around the outside
of the elements in this figure are the power distribution and core local area networks which
tie together the separate subsystem units. In the center of the elements are the multiple
local control buses which tie together the elements within a subsystem unit. This figure
assumes that three general avionics processors, one special avionics processor, three local
control buses, a timing bus, and one set each of analog and discrete bundles are needed.
Two stand-alone payloads are shown under the control of the payload subsystem controller.
Not all hardware and software elements are shown; just enough to show how the generic
architecture could be allocated and tailored to a real, operational mission and system.

Specialized SOCS hardware elements for operational command and control of the vehicle
and vehicle launch checkout and control are also shown, such as the launch support
interface (and perhaps launch blockhouse elements depending on functional allocations),
and the controller for the transfer stage (if it is controlled from the spacecraft and not
independently from the ground). GAP 1 is assumed to be adequately sized to support the
integrated processing needed for guidance navigation and control, tracking, display and
control, command processing in SOCS, and the data system in SDSS. It includes the
appropriate input/output for analog and discrete signals for the entire system, since (it is
assumed) that commands over the network to other subsystem units would be
complemented by analog or discrete control signals over these lines to set up the other
subsystem units. GAP 2 is assumed to operate in conjunction with the remaining
traditional subsystems (communications, electric power, and environment and life support;
as well as with the developmental flight instrumentation needed on early missions. GAP 2

332

operates (in this assumed allocation) in conjunction with a special avionics processor used
to support communications or tracking signal processing. GAP 3 supports the operation of
payloads, with some applications running in this GAP and others perhaps running in
specialized payload subsystems such as represented by Payload System 1.

The next section describes the SDSS and the SOCS, the two key subsystem architectures
developed to define the SGOAA.

3.33

weideyq adepau] wasAg vieq «sedg dusuan panquisy] ‘g-¢ a3y

)

HIOMIBN UOLNGLISI] JOMO

My
e e s
5 2
HOMON
TN 10199 ;
eJsemyos [ong %
14Q oaueD
; peojAud
52
3 140
% JOROMIOD
on Bopeuy peoiheg
{ mpwyy josuoDf
4 ANOOIOA

2z
[TT . |
<
L]
o O
Jx
=

z3
oA
®uw
o Xe)

334

3.4 KEY INTEGRATING SOFTWARE SUBSYSTEM ARCHITECTURES

The scope of this architecture study to date has been focused on space data system
architectures. To develop space data system architectures for the NASA JSC Flight Data
Systems Division, it was necessary to examine the key applications which drive space data
system architectures, i.e., the space operations applications. These key applications consist
of the Crew Display and Control Subsystem and SOCS. These subsystems, as identified in
Figure 3-2, are the two operationally oriented applications falling within the auspices of the
NASA JSC Flight Data Systems Division needed to meet user needs and which also provide
the primary means by which astronauts control the operation of the spacecraft. They must
be effectively supported by the SDSS, also within the auspices of the NASA JSC Flight Data
Systems Division. The SDSS consists of all data processing and data communications
services and operating system entities supporting the vehicle avionics subsystems. The
SOCS and SDSS Subsystem architectures have been developed and our presented in the
following paragraphs of this section. The Crew Display and Control Architecture is
recommended as a future development task for the SGOAA study. The other avionics
subsystems identified in Figure 3-2 fall under other NASA JSC Divisions. It is
recommended that the SATWG initiate development of generic avionics architectures for
those avionics subsystems identified in Figure 3-2 that are outside the auspices of the NASA
JSC Flight Data Systems Division.

The SDSS and the SOCS are the two primary integrating subsystems in a space vehicle
avionics architecture. The following paragraphs discuss the generic architectures developed
for these two subsystems and present the top level merged data and control flow diagrams.
Common elements that provide a broad spectrum of generic avionics functions/services
are also presented. To be developed as complete architectures for specific applications, the
generic architecture definitions for these two subsystems require additional system
engineering activity to develop control state transition diagrams, fault
tolerance/redundancy management requirements and risk management definitions,
perform prototyping and simulation implementation, and implement performance

analysis.

3.4.1 SPACE DATA SYSTEM SERVICES ARCHITECTURE

The SDSS is a generic architecture designed to provide a comprehensive set of data
processing services to all space vehicles and subsystems. The SDSS architecture was
designed to satisfy the following architectural guidelines:

3.4-1

Services must hide hardware implementation characteristics from applications.
- Minimize change effects and maintenance problems.
- Ease reconfiguration. —
- Reuse software.
Use standards for services to achieve open architecture.
- Provide transparent system expansion.
- Enable new technology insertion.
- Minimize interface implementation difficulties and change.
- Provide a basis for interoperability.

Based on Client Server Model
- Application Program Interface (API) must be established and utilized to achieve
application portability.
- Message protocol must be standardized to achieve interoperability between
cooperating systems.

Hides Hardware Characteristics from Applications
- Minimize change effects.
- Ease of reconfiguration.
- Software reusability.
- Minimize software maintenance.

Hide System Configuration from Applications
- Minimize change effects.
- System expansion transparency
- New technology insertion transparency.
- Minimize software maintenance.

Use Standards Where Feasible
- System expansion transparency.
- New technology insertion transparency.
- Minimize interface changes.
- Allows utilization of common items.

Avoid Duplication of Function
- Minimize training.
- Standardizes interfaces.
- Minimizes development costs.

Provide Common Service Elements
- Where needed by two or more applications.
- Common software.
- Generalized services to connect all systems.

Transparency of Data Location and Source
- All access is through Runtime Object Data Bases (RODBs) located in
distributed processing elements.

Supports a Multi-Processing/Distributed Processing Environment.

Fault Detection and Redundancy Management
- Built in to all levels of the architecture.
- Hardware monitor of hardware failures.
- Software monitor of system status.
- Automatic reconfiguration by hardware/software with manual override.

342

Figure 3-4 shows the five functional entities which comprise the SDSS to meet these
architectural requirements.

Sensors & Effectors

Crew
D&C

3 Crew
D&C
Appllcaﬁns/'
(including Space
Operations
Control
Subsystem) Space
Operations
Control
Subsystem

Bare
Machine
User

Figure 3-4. Space Data System Services

The Standard Data Services Manager provides all interface to the system users for data
processing and data communication services. Services to be provided to the users are
derived directly from user requirements.

The Data System Manager provides the housekeeping and control services for the SDSS.
There is a command and control interface to the crew and to the SOCS. Command and
control service requirements are derived directly from user needs.

The three other software entitles in the architecture, Network Services Manager, Data Base
Manager and Operating System provide SDSS services as required by the Standard Data
Services Manager and the Data System Manager. An Ada Language bare machine user may
interface directly with the Ada RTE.

Note that Figure 3-4 identifies both direct and indirect derived required functions. Direct
derived required functions (Standard Data Services Manager and Data System Manager) are

343

those derived to directly provide the functionality needed to meet requirements imposed by
user applications for information and services control and data distribution. The indirect
derived required functions (Network Services Manager, Data Base Manager and Operating
System) are derived, in turn, to meet the requirements imposed by the Standard Data
Services Manager and Data System Manager functions; thus they indirectly meet user
applications requirements for control.

The successful implementation of a generic avionics architecture is based on the
establishment and compliance to both logical and physical interface standards and
requirements at the user interfaces to that architecture and internal to the architecture. The
following paragraphs discusses each of the five SDSS functional entities at lower levels of
functional decomposition.

3.4.1.1 SDSS Control Modes

Figure 3-5 shows the multiple ways in which a user may exercise control of and
communicate with the SDSS. These multiple logical communication paths provide
robustness to the system.

Primary Applic
Control (Comple

Procedures)

= Logical
Services —— Physical
Manager = M5,
Primary Data -] g:tn."ily'
ol f i Control (Override
ontrol ml-
Automated Command /Manual Switches) SDatta (each node)
ysiem
Manager

* (each node)

Figure 3-5. Space Data System Services Provides Multiple Control Modes

3.44

There are direct hardware (physical) interfaces established between the Crew Displays and
Controls (D&C), Ground Control, SOCS, Applications and the Standard Data services
Manager. Applications are defined as user software running in a processing element and
any associated hardware under control of the application such as Inertial Measurement
Units, RCS jets, etc. The ground control interfaces are by way of RF links to a SAP and then
over the core network or local communication to the processing element containing the
Standard Data Services Manager of interest. Crew, SOCS and Application interface is over
the core network, local bus or by a direct interface to the processing element.

User transparent logical interfaces provide alternate paths for command and control of the
SDSS and Applications. The primary logical control path is through the SOCS to either the
Applications or to the Data System Manager. In the event of a SOCS malfunction, the crew
can communicate directly with the Data System Manager or Applications by way of service
paths provided by the Standard Data Services Manager. Manual overrides such as switches
may be provided as required.

Note that the single physical interface to the external environment is the Standard Data
Services Manager thus simplifying the physical interface verification process.

3.4.1.2 Standard Data Services Manager

The Standard Data Services Manager is a service software functional entity that provides
data and command service common functions that are required by one or more
applications. Data is defined as sensor data, application data and crew or SOCS data.
Commands refer to effector commands, requests to application programs and requests to
Crew D&C procedures.

As shown in Figure 3-6, Standard Data Services consists of the modular sub-elements Data

Acquisition, Data Distribution and the Reports Generator. Standard Data Services executes
under the Operating System.

3.45

Space

Opersations
Crew RODB Control
Subsystem

Applications

Effectors

Data
Distribution

Reports
Generator

Data
Acquisition

Operating

System Applications

Data Base
Manager

3

S \w
o .':“.‘!‘v-‘_\s§ N
N ‘&&m

R
=

-
.

&

Data
System
Manager

Figure 3-6. Standard Data Services Manager

3.4.1.2.1 Data Acquisition

Data Acquisition (DA) provides both data and command functions. Provided are the necessary
protocols and command sequences to acquire data over local data buses. DA places all sensor data in
a RODB for application access. DA, at user request, can also perform pre-processing on sensor data
such as limit checking and data conversions. DA performs all writes of data and commands to both
local RODBs and remote RODBs (RODB Link) as required by applications. All non-recoverable
changes to the RODB are sent to the Journal Manager in a distributed processing system in order to
maintain a RODB backup copy for recovery purposes. DA provides the necessary protocols and
command sequences to write effector commands issued by applications over local data busses. DA
also provides the interface to the Network Services Manager for remote effector commanding over
the core network to remote processing elements. DA, at user request, provides command data
conversions from computed data types to data types required by the effector device. For a
distributed processing system, the Journal Manager loads the RODB in the distributed processing
elements at initialization and maintains a backup copy of the RODB for reconfiguration and/or
reinitialization.

3.4-6

3.4.1.2.2 Data Distribution

Data Distribution (DD) provides local and remote reads of Standard Data Services data and
commands from local and remote RODBs. RODB read supports application reads of sensor
data, command requests, and application derived data from both local RODBs and remote
RODBs (RODB Link). This function also handles the distribution and logging of all data
associated with caution and warning events, application derived events and advisory
messages. These events may be detected from sensor data or detected by applications.

Events messages are created and distributed. Standard Data Services health and status data is
provided to the Data System Manager for evaluation and appropriate action. DD sends
RODB sensor data and application derived data to the ground in accordance with specified
telemetry data tables and formats.

3.4.1.2.3 Reports Generator

The Reports Generator provides a general report generation capability primarily based on
predefined table driven formats, data sources and report destinations. Requests for reports
are made through the SOCS. This entity also provides the capability to generate special

purpose reports.

3.4.1.3 Network Services Manager

The Network Services Manager (NSM) as shown in Figure 3-7 provides for peer-to-peer
communication between applications on distributed processing elements communicating
over the SDSS core network. These processing elements may be on the same core network,
on different core networks(by way of a gateway or bridge) or to a remote system such as the
ground through a SAP configured as the service provider for an air to ground
communication link. The NSM provides all management services required for the local

core network.

347

Remote
Operations
Manager

Network

Manager

Network
Assoclation
Controller

Operating Directory
System Service
Manager

Figure 3-7. Network Services Manager.

The architecture is based on standards developed by, and others currently under
development by the ISO. The basic reference model for OSI consists of seven layers. Figure
3-8 shows an example of partitioning between software and hardware supported by this
architecture. The NSM architecture is targeted toward having a common implementation
executing under the Operating System in each processing element on the core network.

As shown in the example of Figure 3-8, a potential relationship can be mapped between the
OSI Stack and elements of the NSM architecture. The OSI stack implementation is a design
that can be implemented under the NSM architecture; however, the NSM architecture is
general enough to allow other implementations such as TCP/IP. This is accomplished by
providing for capability for the NSM architecture to contain software interfacing up to the
applications, software interfacing between applications and drivers, software drivers for the
hardware, and the actual hardware.

348

Other Network Controllers

t t + App interface
gk mam
Handler ‘ —agq— 7. Application —gp

«a— 6. Presentation _p,

% Potentlal
Relationships , 4. Transport .

App-
Oriented
Protocol
Server

5. Session

SOFTWARE

HW-
Oriented
Protocol
Server

~——ag— 3. Network

-t 2. Data Link

RRER

Hardware g— 1. Physical

Figure 3-8. Stack Software and Hardware Partitioning

3.4.1.3.1 Network Service Controller

The Network Service Controller (NSC) as shown in Figure 3-9 is the element in the NSM
that provides all user access to the network. It is the controlling function for the NSM. All
user access to the network is to be through a NSM Interface Definition (NSMID). This
NSMID will consist of a set of service primitives for each NSM function.

All requests for network service and responses to those requests for services are through the
NSC prior to being sent to the appropriate NSM function for implementation. The NSC
provides for command verification, program management (Network Stack Control),
management of the queue of service requests by priority designation, management of time
for the complete SDSS, and is the interface to applications using the NSM. The NSC
exposes all of the NSMID services to users.

In order to provide a standard interface to the network and isolate application/user
uniqueness, all requests for services to the NSC and responses to those requests from the
NSC will be through the Standard Data Service Manager and not direct to the
applications/users. Network health and status data is provided to the Data System Manager

349

for evaluation and appropriate action as required. Health and status data is also provided to
the Network Manager for use in reconfiguration of the network to accommodate failures.

Network Remote Directory Network
Manager Operations Service Association
Manager Manager Controller

Network
Command
Verif.

Network

Network
Queue

Manager

Timing Standard Data

Service Data System

Controller Service Manager
Manager

Figure 3-9. Network Service Controller

3.4.1.3.2 Network Manager

Network Manager (NM) functions can be divided into network coordination (configuration
management), performance management, security management and network fault
detection, isolation and control (FDIR) management. Network coordination accumulates,
develops and maintains a network address table that contains the addresses of all processing
elements on the network. Performance management gathers data for performance analysis
and accounting. Performance management data is sent to the Data System Manager for
evaluation and initiation of action to resolve performance problems that may occur. In
specific instances, the network may reconfigure without commands from the Data system
Manager to bypass hard failures. Security management detects unauthorized attempts to
enter the network or modify network parameters and reports infractions to the Data System

3.4-10

Manager. FDIR Management collects and reports permanent errors, transient errors and
failed attempts to establish a peer-to-peer association to the Data System Manager. FDIR
Management performs authorized reconfiguration in the event of a hard failure.

3.4.1.3.3 Remote Operations Manager

The Remote Operations Manager (ROM) is the entity that provides the capability for
interactive applications processing in an open systems environment. A remote operation is
defined as one in which an application in one processing element requests an operation by
an application in another processing element on the network. The ROM establishes the
protocol necessary to request, control and acquire the results of remote operations.

3.4.1.3.4 Network Association Controller

This entity provides a capability for two application entities to establish, maintain, control
and release an application association over the network.

3.4.1.3.5 Directory Service Manager

The NSM Directory Service Manager (NSM DSM) provides a directory of names, addresses
and other information needed by the NSM to establish communications over the network.
The NSM DSM contains the protocol required to obtain access to the directory and the
names and addresses of all processing elements on the network. In addition, the NSM DSM
will contain the names and status of all application entities to which an association may be
attempted. The NSM DSM protocol will provide a capability to obtain access to directory
services on external networks. NSM DSM will provide the capability to be modified by the
Data System Manager in order to reflect network and application status. Requests for service
from remote directories will use the capabilities of the Remote Operations Manager.

3.4.1.4 Data System Manager

The Data System Manager (DSM) shown in Figure 3-10 is the system executive, the entity
that manages and monitors the Space Data System hardware and software. The DSM
executes under the Operating System. In a distributed processing system the DSM will have
a single processing element designated as the DSM with parts of the DSM functions
distributed to the other processing elements on the network. For fault recovery purposes, at
least one additional processing element on the network should be assigned as a redundant

3.4-11

"hot backup" to the DSM processor. The distribution of functions is necessary to provide
the DSM with the ability to acquire the data needed to manage the system. In a centralized
processing system all DSM functions will be in the central processing element with a
redundant backup being an option dependent on system requirements.

The DSM performs initialization, startup, configuration and reconfiguration of the data
system, maintains the configuration, monitors data system health and status, handles
assigned data system FDIR responsibilities and manages the time distribution system.

Standard
Data Services

Configuration
Manager

Space Operations
Standard Data Services Control Subsystem
Network Services

Data Base Manager

Operating System Crew Display

Timing
Service
Controller £

.

Figure 3-10. Data System Manager

3.4.1.4.1 Configuration Management

This function maintains the system configuration data base. Prior to the mission, the initial
system configuration is defined and loaded into the data base. This system configuration
table will contain the topology of the system, processing element addresses, application
software load allocations, service software load allocations, fault recovery reconfigurations
processes and all other data needed to completely define the data system. During operation,
DSM will use this configuration table to manage the data system. DSM is also responsible

3412

for updating this table to account for all reconfiguration activity. The crew or SOCS through
the DSM can initiate changes to the configuration.

3.4.1.4.2 Initialization, Startup and Reconfiguration

At power-on, the capability shall be provided for the DSM processor to load the DSM
software, perform self-test, broadcast that it is operational and take command of the system.
Simultaneously, the backup DSM processor will load the backup DSM software and
broadcast that it is operational. In the event the backup DSM processor does not receive a
message from the DSM processor that it is operational and has assumed command, the
backup DSM processor will interrogate the DSM processor. If a satisfactory answer is not
received from the DSM processor by the backup DSM processor, the backup DSM processor
will command the DSM processor off-line, designate another processor as backup and take
command. If a satisfactory answer is received by the backup DSM processor from the prime
processor, initialization will continue in a normal sequence. A similar sequence shall be
followed in the event the backup DSM processor does not initialize to an operational state.

The following sequence of events shall follow initialization of the DSM. On a data system
wide basis, the DSM Initialization, Startup and Reconfiguration entity is responsible for
accessing the system configuration table at system initialization to determine what software
is to be loaded into the various processing elements and in what sequence. Once that
determination is made, the DSM shall load the appropriate software into each processing
element and initialize the processing elements in the predefined sequence. Each processing
element shall perform self-test as a part of the initialization sequence and report test results
to the DSM Health, Status and FDIR Controller. Initialization failures shall be handled in
accordance with the pre-loaded fault handling and reconfiguration tables. Successful
completion of the initialization sequence shall be reported to the SOCS and Crew and the
DSM Health, Status and FDIR Controller shall begin gathering status data on all system
elements. In the event that the required status is not reached within a specified time period
a fault condition shall be reported.

This DSM entity can also be requested within mission guidelines by the crew, SOCS, a pre-
planned sequence of events, applications through Standard Data Services, Network
Services, Operating System or the Health, Status and FDIR Controller to load and initialize
software, terminate software and reconfigure the data system.

34-13

Within each processing element, the capability must be provided upon DSM command to
load, initiate and terminate application software via the Operating System. The capability
must also be provided to download application software and issue system configuration
commands to processing elements attached to local communications.

3.4.1.4.3 Health, Status and FDIR Controller

This controller consists of a four stage process. Each processing element gathers health and
status, then processes the data if capable, sends the data to the DSM which then processes
the data from all sources to perform Health, Status and FDIR control on a data system wide
basis. All detected faults and failures are reported to the crew and to SOCS. The degree of
automatic recovery and reconfiguration based upon detected faults and failures is
dependent upon the system implementation and the mission.

In each processing element, the Health and Status (H&S) function collects the application
processor H&S data. Faults are reported to the application processor local FDIR function.
All H&S data along with fault data is also sent to the DSM H&S and FDIR Controller. The
application processor FDIR function processes the H&S data to determine the health and
status of the processor. This function alerts the crew, SOCS and the DSM of detected faults,

failures and overloads.

The system H&S function resides in the DSM processor. It collects H&S data from all
processing elements and maintains this information in a data base. The data is also sent to
the system FDIR function for processing to detect faults and failures. H&S is responsible for
maintaining a fault log for all system components and for controlling the reconfiguration of
the system resources. This function provides for automatic reconfigurations to account for
detected faults and failures, based on pre-defined configurations and mission rules
contained in the system configuration table. This function also provides for manual
reconfigurations in response to crew and/or SOCS commands. The recovery process for
each fault subject to automatic recovery must be defined in the system configuration table.
This function also detects system overloads. All detected faults and failures are reported to
the crew and SOCS.

3.4.1.4.4 Timing Service Controller

This function monitors the status of the time source and the time distribution service. It
also coordinates the distribution of time to all processing elements. It provides the

34-14

capability for automatic reconfiguration within established system configuration table
guidelines based upon faults or failures. It also provides the capabilities for manual
reconfiguration and resynchronization based upon commands from the crew and/or SOCS.

3.4.1.5 Qperating System

The Operating System (OS) as shown in Figure 3-11 provides the layer of SDSS software that
isolates other services as well as application software from the data processing hardware
element. The OS provides management, allocation, and deallocation of the processor,
memory, timing and input/output (I/O) processing resources for application and service
software. The OS architecture for the SDSS provides for custom Ada software applications
(Ada RTE), and commercial off-the-shelf (COTS) utilities and applications (OS Kernel). In
addition, OS/RTE Extensions is provided to accommodate device and resource
management functions unique to the SDSS that are not normally provided by an Ada RTE.
Non-standard processor services are provided to accommodate unique mission processing
requirements. Note that the Space Station OS/Ada RTE has many features common to this
generic OS architecture.

COTS Ada
Applications

Manager
N
o3 B
Data System \\{\\f\\%‘ﬁx \
Manager RO

tandard
Data Services

OS/RTE
Extensions

etwork

Services Non-Standard e

Processor
Services

Figure 3-11. Operating System Services

3.4-15

3.4.1.5.1 OS Kernel

The OS Kernel provides an operating environment which supports COTS applications, —
existing non-Ada compatible COTS software and Ada applications through the OS/RTE
Extensions by compliance with pre-defined API standards. API standards should provide
for transition to or be POSIX compliant. The OS should be compatible with the POSIX OSE
Reference Model as described in reference [POSIX91] and OS Kernels used in commercial
processors. Major functions provided are process management and communications,
memory management, 1/O operations, CPU management, privacy and security, software
initialization and configuration management, utility services and provision of software
error monitor and logging support for FDIR. The process management function should
provide a multi-program environment enabling one or more multi-tasking real-time Ada
application programs to run simultaneously with multiple non-real-time programs.

3.4.1.5.2 Ada RTE

The Ada RTE entity is to provide the necessary processing services to support the Ada
programming language as defined by ANSI/MIL-STD 1815 (latest version), Reference
Manual for the Ada Programming language. The Ada RTE will also support and be
supported by the OS/RTE extensions and be supported by a POSIX compliant OS. Processing
services to be provided are task management and communication, memory management
and I/0 management. The Ada RTE will be required to operate in two environments. The
first environment is a characterized by multiple Ada programs with multi-tasking
supported by a POSIX compliant OS. The second environment is characterized by multiple
real-time Ada programs implemented on an OS kernel.

3.4.1.5.3 OS/RTE Extenslons

OS/RTE Extensions provides those functions required by the SDSS that commercial OS
Kernels or Ada RTEs do not normally provide. It is to be noted that if the OS Kernel or Ada
RTE provides the function it does not have to be developed as an extension. The
extensions can be separated into the two categories. The first consists of those functions
which are dependent upon the hardware and software implementation. They are
management of the backplane bus internal to the processing element, initialization and
self-test, and timing distribution. The second category consists of those functions which
have the potential for compatibility with POSIX Ada bindings (IEEE P1003.5) as the POSIX

3.4-16

standard continues to be developed. These functions are real-time applications task control
and communications, Ada multi-program management and inter-process communication.

3.4.1.5.4 Non-Standard Processing Services

This function provides those processing services which are unique to a specific vehicle or
mission. A representative list of potential services is shown in Figure 3-11. These services
would be provided by a SAP configured for the unique needs of the system.

3.4.1.6 Data Base Manager

This entity provides services to the SDSS subsystems and application users for the
management of structured data files, file transfers and file redundancy management. In a
distributed processing environment with a data processing element or elements assigned to
function as a mass storage device and containing multiple processing elements on a
network, the generic architecture would be as shown in Figure 3-12. For a centralized
processing system with only one processing element (not including redundancy) the
functions shown to transfer data files between processing elements (nodes) on a network
would not be required. The Data Base Manager (DBM) executes under and uses the services
of the OS. All communication with and requests for services from the DBM are through
the Standard Data Services Manager.

3.4.1.6.1 File Service Controller

The function provides the services necessary to create and manage structured files. Files
conforming to a standard fixed structure are baselined in order to provide the capability for
file transfers between non-homogeneous software systems. The File Service Controller
(FSC) responds to requests for file transfers from the Distributed file Transfer Controller
function located in other nodes. This function also manages the DBM resources such as
driver tables and provides for file redundancy based on a pre-defined data criticality.

3.4.1.6.2 Node Directory

The DBM will be provided a directory at system initialization of node names and addresses
authorized for specific file transfers. The DBM will perform file transfers in accordance
with this directory. The directory can be modified by the crew or SOCS with the DBM being
responsible for maintaining the directory.

3417

Mass Storage

Controlier

Standard Data Data System Manager
Services Manager

File Transte!
Access &
Mgt

RODB Controller frreere

(o

S

Figure 3-12. Data Base Manager

3.4.1.6.3 File Transfer Access and Management

This function provides the means to transfer structured files outside the SDSS to systems
with heterogeneous software. The capability to receive files from heterogeneous systems
will also be provided. The file will be converted to virtual file store form and transferred in
this form upon receipt of an authorized request. The receiving system must provide the
capability to convert the virtual file store form to the receiving system real file store form.
The DBM will provide the capability to convert from virtual file store form to SDSS real file
store form.

3.4.1.6.4 Distributed File Transfer Controller

This function provides the means to transfer structured files inside the SDSS upon request
from applications, the crew or SOCS to the requested location.

34-18

3.4.2 SPACE OPERATIONS CONTROL SUBSYSTEM

In the SGOAA , the SOCS is the high level integrating command and control functional
entity for a space vehicle and mission. SOCS functions may be allocated to both ground
mission control facilities and onboard space vehicle facilities. As illustrated in Figure 3-13,
the Crew, through the SDSS, has direct interface to and ultimate control of all vehicle
subsystems through the various controller entities. The crew also has a direct manual
interface option to the subsystems through the Systems Controller. Ground control
functions are implemented through the Command Controller. For unmanned vehicles,
the Command Controller is the primary control source. The Systems Controller is the
direct interface to all subsystems and implements the commands of each individual
controller entity. The Systems Controller, Vehicle Controller and Command Controller are
discussed in more detail in the following paragraphs. |

Although these vehicle operations control functions may be partitioned and allocated to
some degree between ground and space-borne control facilities, this does not imply there
are no other functions to be performed by a ground control facility. The focus in SOCS is on
vehicle operations control, not overall mission control, which may imply other functions
will be needed to be performed in a ground control facility.

3.4.2.1 Vehicle Controller

The function of the SOCS Vehicle Control Manager is to coordinate the actions of the
individual subsystem controllers with regard to overall operation of the vehicle. Figure
3-14 illustrates some of the major functions that this manager must perform. Vehicle mode
is a function of mission phase and/or vehicle situation. Each mode requires a different set
of control rules and commands. Regardless of vehicle mode, the Situation Awareness
Manager has the responsibility for being aware of vehicle state with regard to the external
environment and taking action or providing alerts as appropriate to ensure mission success
and prevent vehicle or crew loss. The State/Attitude Controller has the responsibility to
know internal vehicle states and to coordinate these states with incoming commands to
change states in order to implement the incoming commands in a safe and optimum
manner. The Alternative Response Manager has the responsibility to determine and
maintain awareness of vehicle capabilities and provide this information as needed to
authorized requesters to include recommending changes to commanded actions if the
vehicle capabilities will not support that action.

3.4-19

Crew Display & Control Subsys
Hand Controliers & loplay

Control <@—-
Subsyg

C&T
Discretes Control
C&T Subsys
Contro SR
'_: 3 3 SR ERRE ST
g\\"‘f\i\‘\%‘»

S -\\.

Propuision
Control
Subsy

EPS
Control
Subsys

ELS
Control
Subsys

SDS
Subsys

Crew Display &

Control Subsys Scl & Payload
Subsys

Figure 3-13. Space Operations Control Subsystems

® GNC provides
attitude and state

Preflight, Ascent, Orblt, - ® C&T provides ground
Rendezvous, Docking, -to-space
Bmhlng, s.P.raﬂon, Stick & Rudder Control, coordimﬂon &
Descent, Approach, Hand Controller, rangin
Landing, Post-Landing Throttle, Switches ging
® ELS provides life
support expendibles
® EPS provides power
for sensors,
Collision Avoldance, Expendibles Tradeoff, processors &
Orbital Status Monltor, Range Projections, effectors
External Hazard Critical Element
Monitor identification ® Payloads must be
3 : secured

Figure 3-14. Subsystem Coordination through Vehicle Control

3.4-20

3.4.2.2 Command Controlier

This controller is the central control entity for the spacecraft and mission. The functions, as
shown in Figure 3-15, are allocated to onboard implementation or to the ground control
center, based upon vehicle and/or mission need. In a manned vehicle a capability is
provided for crew override. The Command Manager provides a capability to implement
those command and control sequences necessary for specific mission accomplishment. The
Mission Plans Manager is the primary builder and keeper of the plans (from both the
current mission and all older missions that preceded the currently underway mission), and
is the entity that develops predefined timelines or adapts them to real-time commands
from external authorized sources such as the crew or ground control personnel. The
Mission Operations Manager is the execution entity for the mission timelines or real-time
commands. The Mission Information Manager is responsible for gathering mission
activities, operations and subsystems data and making this data available to users. Each of
these functional entities can be allocated to either the ground mission control center, the
mission director, the spacecraft command processing subsystem, or the spacecraft
commander. They can be allocated to the backroom support agencies, the offboard
operations control or the onboard operations control. This definition of Command Control
enable the architecture to insure all operations control requirements are identified,
allocated to implementation facilities, and include pre-planned interface requirements.

3.4.2.3 Systems Controller

The Systems Controller is the vehicle controller and is the command and control interface
to all vehicle subsystem controllers from all other control entities, as shown in Figure 3-16.
This entity coordinates the interaction of all vehicle subsystems in responding to command
inputs from all sources in order to enable the vehicle to safely and effectively accomplish
the mission. The System Controller must at all times be aware of vehicle state and resource
status and implement all commands received in accordance with the impact on vehicle
state and capability. In manned vehicles, the crew has a direct interface to issue commands
to subsystems through the Systems Controller. The crew will also have a capability to
override Systems Controller commands under predefined conditions. Each subsystem will
have an internal control entity for its own operation.

3.4-21

[Command Controller \ e Bridges Closed
: and Open Loop
Controls

e Supports
Alternative
Allocations

e Spans "Back-
Room"” to Control
Center to Vehicle
Commander

1 Integrates Mulitiple
Functional Areas

Vehicle
Safety

e The Vehicle is the System
e Systems Control
O Across Multiple Subsystems
o Optimizes System Performance

O Responds to Astronaut Priorities
e Subsystems Control

O Internal to Each Subsystem

Subsystem
Controller o Common Functions

Resource
Controller

Figure 3-16. Systems Control Optimizes Functionality

3422

3.4.24 munication Trackin ntrol

The Communications and Tracking Control application prepares the communications
directions to implement command control function guidelines, maintains
communications configuration data, and manages tracking configurations to enable the
crew to maintain control over communications subsystem software.

3.4.2.5 Crew Manager

The Crew Manager application is the overall management applications system for
supporting the vehicle crew activities. It consists of scheduling software to monitor crew
time schedules, medical applications to monitor crew health and checkups, and training
applications and simulations to enable the crew to perform training while in flight.

3.4.2.6 Inteqr Logisti ntr

The Integrated Logistics Control subsystem performs the logistics management and the
maintenance management functions for the spacecraft. This function is shown in Figure
3-17. It insures that logistics support elements are available when needed to support vehicle
and crew activities, and that maintenance can be performed as needed to insure all
components on the spacecraft will be operable when needed. Maintenance addresses both
planning activities, preplanned routine repairs and ad hoc emergency repairs as needed.

3423

Logistics Maintenanc

Manager Manager

® Logistics handles parts @ Maintenance must enable the spacecraft t

Housekeeping and Trash Maintenance Effectiveness Analysis

Maintenance Job Scheduling

@ Logistics Manager tracks: be repaired In real time
O Consumables @ Maintenance Manager runs:
O Parts and Spares O Maintenance Planning
O Stowage IAA:I.?;:In:nce History and Trend
O Equipment Repairable Item Analysis
O
o]

OO0 O

Maintenance Equipment,
Tools & Supplies

Figure 3-17. Integrated Logistics Control Supplies and Fixes Broken Spacecraft

3.4.2.7 Payload and Science Operations Control

The Payload and Science Operations Control subsystem is a microcosm of the overall SOCS
application, tailored to the needs of individual payloads. It performs the functions shown
in Figure 3-18. The payload and science command control function provides the command
processing for the payload and its command interface to the rest of the spacecraft. The
payload and science systems control performs the health and status monitoring and control
for the payloads and their interface to the spacecraft subsystems. The payload and science
vehicle control function provides a control subsystem for real-time and non-real time
operation of remote spacecraft and rovers. The payload and science communications
control provides the control interface between the SOCS communications controller, the
avionics communications subsystem and the payload communications subsystem.

The payload operations control subsystem architecture is structured to provide maximum
(potential) independence to the payload subsystems so they may operate independently of
the vehicle operations control. Since the payloads may have missions aspects different
from the host vehicle with concurrently performed missions, which may not be linked, this
will provide greater flexibility to the operation of payloads and science missions.

34-24

Payload/Sclence
Command
Control

Payload/Sclence
Systems
Control

e e s L A e

Payload/Science
Vehicle
Control

Payload/Sclence
Communications
Control

Payload/Science
Data
Manager

e The Payload and Science Operations
need Command and Control just like a
vehicle does

e Controllers interface with:
o Other SOCS subsystems
o Other avionics subsystems
o External payload platforms
e Data Manager intefaces with:
o Spacecraft Data Systems Services
o Ground Data Processing Systems

Figure 3-18. Payload and Science Operations Control

3.4-25

3.5 SPACE DATA SYSTEM ARCHITECTURE APPLICATIONS

The SGOAA can be used to implement avionics architectures for specific mission
requirements, and to define the detailed functions and subfunctions and the preferred
partitioning between hardware and software. This section describes a comparison of the
SGOAA to the Space Station architecture, and describes how the SGOAA was used to
develop the preliminary architecture requirements for the Common Lunar Lander.

3.5.1 SPACE STATION APPLICATION

In order to test the validity of the Generic Processing Hardware Architecture Model, shown
previously in Figure 2-16, a test case was conducted to determine if the functions provided
by this architecture model were capable of satisfying the Space Station DMS Processor
functions. The results of this test case are shown in Figure 3-19, with each of the four small
block diagrams representing Figure 2-16. The equivalency of the Generic Processing
Hardware Architecture functions to the Space Station DMS Hardware Architecture
functions are shown below:

Generic P ine Architect S Station DMS Architect
¢ Network Processing = Network Interface Unit

e Application Processing = Embedded Data Processor

¢ Local Bus Processing = Bus Interface Unit

¢ Test and Checkout = Software Development and Diagnostic Unit
¢ Auxiliary Memory Storage = Mass Storage Device

¢ Video/Graphics = Video/Graphics

¢ 1/OProcessing = Direct Interfaces to Sensors and Effectors

As can be seen from Figure 3-19, all of the DMS functions are satisfied. For example, the
Space Station Mass Storage Unit (MSU) requires the Network Processing function to
communicate over the FDDI network. The Application Processing Function is required to
handle assigned Data Base Management and Data System Management System Services
Processing. The Auxiliary Memory Storage Function is required as the basic function of the
MSU is to provide mass data storage for the Space Station. The Test and Checkout Function
is required for hardware diagnostics as well as software development, test and diagnostics.
The Standard Data Processor (SDP), Multi-Purpose Application Processor (MPAC) and the
Multiplexer/Demultiplexer (MDM) functional requirements are similarly accommodated.
The Time Generation Unit and Base-band Signal Processor are considered to be SAP units
and as such require unique functional configurations.

3.5-1

)
u8isag uoneig adedg ‘sA AIMINYDay SOIUCIAY JHIUID) “1-€ N1y

i

/,

SPOIN SINP3JIPIY SICMPIVL] [ewsaju] Surssadod] JUsUBY) ‘9]-g 3By 395

‘S[NPOUI Yoea SPISUL 1X3} 104 :3}0N

Qr
w
<
@35
o O
- e
[~

z3
R
X u.
(o No]

3.5-2

3.5.2 COMMON LUNAR LANDER APPLICATION

The modularity and tailorability of the SGOAA was tested by applying it to the avionics
design of a new initiative vehicle called the Common Lunar Lander. The elements of the
SGOAA presented below were tailored to the preliminary Common Lunar Lander system
requirements in order to define the data management and command system requirements.

The Common Lunar Lander (CLL) is an unmanned lander designed to land a 60 Kg payload
anywhere on the surface of the Moon. It will be launched on an Expendable Launch
Vehicle and has a nominal mission duration of 5 days. The conceptual design includes
most of the major subsystems that one would expect of any space vehicle including:
Guidance Navigation and Control, Communications, Tracking, Power, Propulsion, and of
course a Data System. The only interface to the payload is a structural attachment (i.e. no
data, power etc.).

3.5.2.1 Space Operations Control Subsystem Requirements Talloring

Figure 3-20 presents the SOCS elements after tailoring to the CLL requirements. The shaded
areas represent those elements which are not required in order to implement the CLL
design. For example, since the CLL is unmanned, there is no need for the Crew Manager
Function. The Payload and Science Operations Control function was eliminated because
the only interface to the payload is the physical attachment. Likewise the Integrated
Logistics Control function was eliminated because of no requirement for these functions on
board the CLL.

While the above functions were deleted in their entirety, some of the other functions were
tailored at a lower level. For instance, when allocating the vehicle control function, all
elements were eliminated except the mode control functions.

One of the guidelines was to keep the vehicle as simple as possible. Since this is an
unmanned vehicle, failures are not life threatening. For this and cost reasons, single string
design concepts were emphasized if part reliability could be estimated to provide a
reasonable chance of mission success. Thus for safety, fault tolerance and reliability issues,
this meant not using elements of the architecture which were available. For the Command
Control and System Control functions, those elements related to safety, fault tolerance and
reliability were deleted. Similar criteria were used to delete other elements of the
Command Control and System Control functions.

353

)
Suuofre], suawRambay waisfsqng unuo) suoneradp adedg gz-¢ amSyg

pejejeq sjuewejy = £

Jefieueyy
vodey uoissiN ©
Joyuopy ojuj

wepfsgns ©
Joyuoi oju

suopeiedo O
B 0juj UoIsIN @

opop/aEls
YeA O
AUD sprimy
191818 OPJUSA ¢

aal ©
By uney sig o
by snped 848 O

SPOY RUD SRHYSA ©

dd
'} UOW SN 84S @
TJOHLNOD TJOHLINOD TOHLNOD
FTIOIH3A W31SAS AONVWNOD

ORIGINAL PACE 0

3.54

POOR QUALITY

OF.

3.5.2.2 Space Data System Services Requirements Talloring

Figure 3-21 presents the SDSS elements after tailoring to the CLL requirements. There is no
requirement for a core network in the Common Lunar Lander data system concept. This is
because, for the vehicle size and mission, the data system reduces to one node, thus there
are no peer-to-peer communications taking place. For this reason, the Network Services
Manager was deleted.

The other deleted elements are fairly self explanatory. The hashed-out area under
Operating System represents tailoring that will take place in the future. At the time this
tailoring was done, it was not clear as to whether an Operating System Kernel would be
required or an Ada Run Time Environment. It is clear, however, that both are not
required, so the tailoring will take place at some future time when the requirements
become more defined.

35.23 Space Data System Hardware Requirements Talloring

As mentioned above, there is no requirement for a core network in the Common Lunar
Lander data system. Thus communications between subsystems will be of the Local
Communications variety. This leads to the Space Data System Hardware Tailoring
presented in Figure 3-22. The grayed out area in the upper half of the figure shows the
SGOAA hardware not required for the Common Lunar Lander mission. Other subsystems
are represented as instantiations of the GAP(M), Sensors or Effectors.

3.55

)

Suuopie], sjuswraainbay sadAa. 5 WwdisAg eyeg dedg “1z-¢ 2y

sieeuRi) OpoN
weis/s jewe} ©
H37I0UINOD
FDIAYES UIISNVHL
37 g3LnamisIa e

(Wodda3 so
oluiolg sen

o4 [epuenbes ©

uophqusiq ewy) uolepeid O

J00 jlog weq anjjey
pue UOREZNURIY 3LH/SO © pue SNIXS LWEeH 09100 O
WeweBuuey eng jewei) O HITIOHINOD Hiad
‘WWOD $9800Id-100U O NV SNLV1S ‘HITVAH Weae
1BN umuBoud-ynw vayv © sisenbey
‘WWOY B (oD Kew L PeOleY puw |eniu| $3800id O
suopwiddy swp-jwey O SIBMYOS sjBujuLe| O
SNOISNILYE J1W/80 e

Y3ITIOHINOD
0DNuaIS N4 @ | (GiHEPY ORIV} 1IN
HIOVNVN W3LSAS
asva viva ONILVH3dO

MS ezijepiu| pus peo O

Pepeo 0g 0L MS AjRuep ©

OLEINOJO3H ANV dNLUVY1S
“LINl W318AS Vivae

Byuooey Bujwyl spewany O
oojAleg Bujuy] JoyuoN ©
HITIOULNOD
2J1AHAS DNINILe
uogunByuod
WHeAS URE O
MS 2 MH ainByuooey O

pelojeQq sjuewe|] =[]

R

O

OLNBIHLISIA YLV(
8$3JIAH3€ QUVANVYIS @

1000843 pUB JoBUeS O

10y oOuwyo SE0JAIS ong B9g O
soiqeL MS pepeoldn © HITIOHINOD
HIDVNVIN NOLLISINDOV V1Va
NOLLVHNOLHNOD® S32IAHIS QHVANVIS @
H3IOVNVYWN HIOVNYI
W31SAS Yivd SAVIAUIS
VY.iva QUVANVY.LS

3.56

CORE
NETWORK(s)

t

3

GAP = General I :
Avionics Processo i

SAP = Speclal STANDKRE™
Avionics Processor DATA
EP(e) = Embedded PROCESSOR
Processor
(Etfector)

EP(s) = Embedded
rocessor (Sensor

i.e., SIGNAL PROCESSOR

LOCAL COMM(es)

e.g., MULTIPLEX DAY,
PROCESSOR

e.g., SENSOR &
EFFECTOR
EMBEDDED
ERENRESES PROCESSORS
SENSORS EFFECTORS

Figure 3-22. Space Data System Hardware Requirements Tailoring

3.5.24 r

Figure 3-23 presents the Generic Processing Hardware Architecture Tailoring. The grayed
out areas represent the elements of the SGOAA Hardware Architecture that were removed
from this implementation since they were not needed. Network Processing was eliminated
because there is no core network for the Common Lunar Lander. Ancillary processing
elements as well as Auxiliary Memory Storage were not required, and obviously because it
is unmanned, video and graphics support was not required. The GAP will be responsible
for applications processing, so that function was retained. Likewise, Local Bus Processing is
an important feature of the CLL conceptual design. One of the driving requirements for the
CLL hardware is the ability to handle various I/O interfaces. It requires numerous analog
and discrete interfaces to other subsystems, and thus the I/O Processing function plays an
important role in the GAP Internal Architectural. The Test and Checkout function is also
required for the CLL.

3.57

) _)
Suuopre] sjuawaImbay a1eMpPIRH o..4ONYDIY [BWBN] JVO “£7-€ Ny)

Bujesed0iy [SULION M sieji0y)
YO{UYm aummpusy pus ssugnoy
esususyyeyy ssoding jeioeds

pus uop|sinboy weq spis |wojBoy/Buissesoid

UopRIOs) 02/n08eY
4 /1 wwboid uopes)ddy
‘404 uojed)jddy uoiss|

spiepuelS 8s8ue)U|

(W 10 S) 10888901d SI)UOJAY |BI6USY)

3.5.2.5 Lessons Learned
The resulting tailored architecture for the Common Lunar Lander is shown in Figure 3-24.

One of the important issues in the Common Lunar Lander Design was the method of
producing, distributing and updating mission time. There were two basic concepts which
were considered. First, use a separate Time Generation Unit and a separate timing bus.
From a SGOAA point of view this would be analogous to a sensor and thus fits comfortably
within the architecture. The other method would be to have the timing unit on a card
inside the GAP. Although this option is not explicitly identified as one of the GAP Internal
elements, provision for such extensions are allowed by the "Backplane Expansion”
capability, and could easily be incorporated as another element attached to the backplane
bus. This demonstrates the robustness of the architecture, because new elements can be
added in a modular fashion without changing the structure of the architecture.

3.59

)

AMPAYIIY PAIOfIe] I, ¢ Jeun] Uowwo) -pz-¢ am3ig
R
SojuOAY §
|ejoedg i
S R
weysisgng e
SUOCHESUNWILOD e .
(8g3) -
uosspusuR) | :!0130 I
asmgoaa | e — L
oD 4y muswUCIAUT
3 B3
; 1
g 3 R
"
U Sopouty
g
Sng Sujuiyy
o] o] ”
owaunswey
sya1u00 0 | Gouy Fow e Apoh :
i ew ..J.eo_-._.w._%._, v, -m__
$01U0LO(3 I9F SO
soiuo) (Y | weiong — weshsqng | | | [Os tommyy | Youmn)
8:%...2::2 Jepuy Bupionay | §
Jojmeusy ewy))
| Wwemisgng uopsndold |
10198 ang) J0IIOD
. OND Pu® pusuAuo) weisfsqng
foions B euepiD (soonyspa gy piayucods)
: | L JO®BeD04d,...... oo Wsksans joswo) suopesd() a3edg
| sojuolaAy [L e
Ivieouer) :
e e L S R SR CORACORRNERTE AR
NIOMIGN WRiy (w007 810D [
HIOMION UORNGLISIT JOMO EEEEA
‘pejeleq xwey

3.5-10

4. CONCLUSION AND RECOMMENDATIONS

4.1 CONCLUSIONS

The SGOAA architecture presented in this report is the product of the continuing "Flight
Data Systems Architecture Development and Analysis Task". Updates on the architectural
development will be provided as reports and presentations to future SATWG and SAE
forums. During this study effort, several guidelines were developed that should be applied
to all spacecraft generic avionics architecture development activities. These guidelines are:

* The architecture must be based on standards

¢ The architecture must be general enough to span platforms for all missions and
operational requirements

¢ The architecture should be a requirements architecture; i.e. one that can be tailored for
design implementation based on actual system requirements.

¢ The architecture must be adaptable to varying system requirements.
e An avionics control structure must be integrated into an architecture.

e The architecture must be adaptable to alternate system design and development
approaches.

ee Static and Dynamic Analysis Techniques
es Functional, Hardware, Object-Oriented, Structured Analysis, etc. Methodologies.

The generic avionics architecture discussed in this report has been applied to the
preliminary design of the data system for the Common Lunar Lander (ARTEMIS) project.
In general, the SDSS architecture was well suited to handle the ARTEMIS requirements.
Preliminary evaluation of the design effort to determine lessons learned for application to
the continuance of the SGOAA study yielded that the SDSS architecture should be extended
to encompass the software development environment architecture and the test
environment architecture. The SOCS architecture requires modification to more distinctly
define the interfaces and partition the architecture between the spacecraft and ground

control.

This application of the SGOAA to the Common Lunar Lander (CLL) enabled performance
of a preliminary assessment of the CLL Data System requirements based on CLL System
requirements. The preliminary architecture for the CLL Data System was developed from
the SGOAA generic SDSS and SOCS detailed functional architectures in approximately two

41

days. Further work involved a refinement of the preliminary architecture and interviews
with other subsystems to determine their requirements on the CLL Data System. This lead
to the estimation of the overall CLL Data System size and complexity. This exercise
successfully validated the usefulness of the SGOAA because it allowed for the realistic
estimation of CLL Data System requirements in a very short time. At the same time,
lessons learned from applying the architecture such as a GAP Internal Architecture Timing
Element will be worked back into the SGOAA.

4.2 RECOMMENDATIONS

This document is presented to share information with SATWG members from the various
NASA centers and with participating members from industry in order to solicit their
feedback and support in the further development and refinement of this architecture.

It is recommended that the SATWG formally adopt the SGOAA and the following four
SGOAA models for space avionics application:

e SGOAA System Architecture Model Definition, as discussed in paragraph 2.3.1.
¢ SGOAA Architecture Interface Model Classes, as discussed in paragraph 2.3.2.

¢ SGOAA Generic Processing External Hardware Architecture Model Definition, as
discussed in paragraph 2.3.2.1.2.

e SGOAA Generic Processing Internal Hardware Model Definition, as discussed in
paragraph 2.3.2.1.3

In addition, the following recommendations are made for extensions to the ongoing NASA
JSC Flight Data System Divisions SGOAA study:

* Incorporate results/recommendations of relevant SATWG previously-commissioned
architecture studies into the SGOAA.

e Extend the SGOAA to include development of a Software Architecture model.

¢ Extend the SGOAA to include development of a System Development and Test
Environment model and interfaces.

e For the interfaces identified in the SGOAA, determine the standards requiring
development and their requirements.

42

e Extend the functional architectures supporting the SGOAA by completing the open
functional architecture for the SOCS and developing one for the human oriented D&C

subsystems.

o Apply the SGOAA to the design of a future Avionics System such as the "First Lunar
Outpost” and run simulations of the design using dynamic analysis tools and techniques
to validate the resultant design concept, evaluate system performance against
requirements and to test potential SGOAA interface and requirements interactions.

It is also recommended that the SATWG initiate development of generic avionics
architectures for the following avionics subsystems that are outside the auspices of the
NASA JSC Flight Data Systems Division.

Electrical Power Control Subsystem

¢ Environmental and Life Support Subsystem

Payload Operations Control Subsystem

GN&C Control Subsystem

C&T Control Subsystem

43

APPENDIX A
SGOAA DEFINITIONS

APPENDIX A
SGOAA DEFINITIONS

Abstraction is the principle of using only those aspects of an entity, object, operation,
function, process, or other subject which are relevant to the current purpose and ignoring
those aspects not needed to improve analytical focus on the current subject. This principle
simplifies a complex subject to render it more susceptible to analysis and design. In object
oriented approaches, data abstraction is the principle of defining a data type in term of the
operations that apply to the entities of the type.

Application is the use of capabilities (services/functions) provided by an information
system specific to the satisfaction of a set of user requirements. (POSIX P1003.0 Draft 14
Guide)

Application Platform (AP) is the set of resources that supports the services on which an
application or application software will run. Also known as a host platform. (POSIX P1003.0
Draft 14 Guide)

The application platform provides services at its interfaces that, as much as possible make
the specific characteristics of the platform transparent to the application.

The Application Program Interface (API) is the interface between the applications software
and the applications platform, across which all services are provided. (POSIX P1003.0 Draft
14 Guide)

The API is primarily in support of application portability, but system and application
interoperability are also supported by the communications APL
Application Software is software that is specific to an application and is composed of

programs, data and documentation. Application software has uniquely defined interfaces.
(POSIX P1003.0 Draft 14 Guide)

Architecture is the structure of Application Software, API, AP, and EEIs which describe the
organization and interfaces of a system.

Avionics System is the set of all electronic and processing based subsystems on a space
vehicle, including all hardware, software and other electronics needed to control and
operate the space vehicle. It is the collection of system elements and allocated capabilities
that provides the coordinated functionality for end-to-end processing in handling the
information needed to interface the space vehicle's major components, to control its

A-1

interaction with its environment, and to respond to human commands. (Adapted from
[JSC 31000))

Communication Interface is the boundary between application software and the external
environment, such as application software on other host platforms, external data transport
facilities and devices. The communications interface may be internal to one space vehicle
or across multiple space vehicles. (POSIX P1003.0 Draft 14 Guide)

The services provided are those whose protocol state, syntax and format all must be
standardized for interoperability.

Communications components include phone lines, global networks, local area networks,
and packet switching equipment.

Component is one of the parts resulting when an entity is decomposed into constituent
parts.

Concurrent engineering is defined as the application of multiple engineering disciplines to
develop requirements in several different but related areas at the same time so the
requirements are coordinated and mutually supportive.

Continuity is defined to mean that requirements changes are proportional to design
changes, i.e., that changes in the requirements will propagate into changes of the same order
of magnitude in the design.

Control Subsystem is an application which selects and implements alternative actions based
on a-priori criteria or real time guidance..

Core Avionics is defined as the control subsystems and the supporting avionics (hardware
and software) needed to enable these control subsystems to function. Core avionics include
the controls for each of the traditional space avionics hardware subsystems (such as
Guidance Navigation and Control (GN&C) and Communications and Tracking (C&T)).
The avionics hardware sensors and effectors are outside the core avionics boundary.

Data Base Manager is the control subsystem which manages structured data files, file
transfers and file redundancy management.

Data Processing Subsystem is an application subsystem providing data processing services.
Data processing subsystems do not perform control subsystem functions.

Data System (for example the Space Data System - SD5S) is a network of data system services,
onboard computational resources, data storage, and human-machine interface devices
which provide onboard command and control, data transmission, computation/processing,

A2

and operating applications software to support a space vehicle's users (crew and controllers),
interfacing systems, applications and subsystems.

Data System Services (for example the Space Data System Services - SDSS) is a service
subsystem with a generic functional architecture designed to provide a comprehensive set
of services to all vehicles and subsystems.

Data System Manager is the control subsystem which manages the housekeeping and status
control services for the SDSS, including health management.

Decomposability is defined to mean requirements can be broken into smaller pieces with
potentially simpler solutions or at least better understanding and a capability for further
decomposition as needed.

Degraded mode is a system condition wherein some system elements (such as hardware,
software, human, or procedural) are sufficiently unhealthy that the system cannot operate

normally.

Dependability is the integrated capability for reliability, maintainability, fault detection and
isolation, reconfiguration, and fault recovery with a non-stop operating system.

Direct Interface is defined as the connection between an entity sending or receiving data
with another entity receiving or sending data for transmission of the same data along the
routing path associated with moving data from the source of the data to the end user of the
data. Data is used by an entity in a direct manner if it passes the data on without changing
the data; thus, for example, network operating systems are direct interfaces between
applications when they package or unpack data and send it to another network node.

Distributed System is a collection of computers, memories, buses and networks that are
concurrently operating in a cooperative manner and communicating with each other.

End-user of data is the last entity which makes a significant transformation, conversion or
operation on the data.

Entity is an abstract element that represents an object in the real world, its data attributes
and essential services with their respective performance and quality characteristics.

External Environment (EE) is defined as a set of external entities with which the application
platform exchanges information. These entities are classified into the general categories of
human users, information interchange entities and communication entities. (POSIX
P1003.0 Draft 14 Guide)

A-3

These entities are classified into the general categories of human users, information
interchange entities and communication entities.

External Environment Interface (EED is defined as the interface between the application
platform and the EE across which information is exchanged. The EEI is defined primarily in
support of system and application interoperability. This interface consists of
human/computer interaction services, information services, and communications services.
(POSIX P1003.0 Draft 14 Guide)

Extensibility is the ability of an architecture to be extended or adapted to new conditions,
changes in specifications or new technologies.

Flight Critical Function is a function which, if it fails, could cause loss of vehicle control
resulting in loss of the vehicle and crew.

Function is an action/task that the system must perform to satisfy customer and developer
needs.

Generic Architecture is an architecture where the elements of the architecture do not
depend on any one mission or program for their definition. The elements of a generic
architecture can be tailored to apply to many different missions and programs.

A Handler Subsystem is a data process which implements a predefined, directed procedure,
either from a control subsystem or a management subsystem.

The Human/Computer Interface is the boundary across which physical interaction between
a human being and the application platform take place.

Interface is the shared boundary between two functional units, defined by functional and
other characteristics, as appropriate.

Interoperability is the ability of two or more systems to exchange information and to
mutually use the information that has been exchanged. (POSIX P1003.0 Draft 14 Guide)

Information hiding (also called encapsulation) is the principle used in developing system
structures where components should encapsulate or hide a single requirements or design
decision, with an interface that reveals little of the inner workings of the system. Software
information hiding refers to the technique of making the external interface to an entity
public, but keeping the internal design details hidden from view. Hiding of the internal
design information allows the implementation of the entity to be changed without
requiring the external interfaces of the entity to be changed. By hiding the internal

A4

implementation, changes are easier to make with minimal rework when system changes
are needed.

Information Interchange Components are things like removable disk packs, floppy disks,
security badges and remote data bases on other application processors accessed by way of

Communications services.

The Information Interchange Interface is the boundary across which external, persistent
storage and data interchange services are provided.

The physical format, data format, code sets and data descriptions are required to be specified
for data portability and interoperability.

Inheritance is the principle of receiving properties or characteristics from an ancestor. In
architecture definition, it allows the specification of common attributes and services only
once because they can then be passed to all descendent or referenced subsystem architectures

or elements.

Laboratory Architecture is defined as a structure which is capable of being configured to
represent a subject open system architecture. Thus, it must include (but not be limited to)
non-proprietary standard communications, processing and interfaces. Interfaces to a
simulation of the subject's operational environment is included. The lab architecture must
include instrumentation, benchmarks, test/simulation controls, displays, and data analysis
capabilities. It must be extensible through the addition of subsystems, services and resources
following published rules. It must be precisely described and maintained.

Logical Interface is defined as the requirements associated with establishing a data
interchange interface between a source of data and the end user of the data. The end user of
the data must be identified to include the requirements for the data and the source
supplying the data must also be identified. Data routing is transparent to logical interface
entities. Routing of the data should not be a concern to the source and end user because the

routing (i.e., direct requirements) is transparent to these entities.

Management subsystem is a data processing subsystem which may interface to a human to
determine options and select alternatives for implementation. A management subsystem
which has no human interface may support one which does have a human interface, or it
may be an artificial intelligence capability which replaces a human, perhaps in unmanned

missions.

Mission Critical Function is any function which, if it fails, results in an incomplete mission,
a mission abort or a loss of payload.

Mission Ready mode is a system condition wherein all system elements, including
hardware, software, human and procedural, are available to enable the system to perform
its intended function and the current mission for which it is intended.

Mode is a predefined set of hardware and software configurations, and associated
procedures used to organize and manage the conditions of operation for an avionics
system's behavior, as planned, pre-planned or directed by a human.

Modular Architecture is an architecture composed of discrete components such that the
design of one component depends only on the interface to other components, not on their
internal design. A modular architecture is decomposable, understandable, protected, has
continuity and is organized in a robust structure. It is desirable that a change in one
component has minimal impact on other components. (Adapted from [SSP 30235]).

Network Services Manager (NSM) is a control subsystem which manages peer-to-peer
communication between applications software running on distributed processing elements

communicating over a network.
Obiject is something perceptible to the sense of vision or touch or to the mind.
Open Forum is defined as the review of a subject in a public consensus process.

Open Interface Standards are standards that are complete, consistent and published. Open
interface standards must be maintained and accepted by a publicly accessible review body.

Open Specifications are public specifications that are maintained by an open, public
consensus process to accommodate new technologies over time and that are consistent with
international standards. The public consensus process for open specifications must be

maintained and accepted by an open forum. (POSIX P1003.0 Draft 14 Guide)

Open System is a system that implements sufficient open specifications for interfaces,
services, and supporting formats to enable properly engineered applications software
(POSIX P1003.0 Draft 14 Guide):

- to be ported with minimal changes across a wide range of systems
- to interoperate with other applications on local and remote systems

- to interact with users in a style that facilitates user portability

Open System Interface Standards are standards that provide for open specifications of open
systems.

A6

An Open System Application Program Interface is a combination of standards-based
interfaces specifying a complete interface between an application program and the

underlying application platform and is divided into the following parts (POSIX P1003.0
Draft 14 Guide):

e Human/Computer Interaction Services API
¢ Information Services API

¢ Communication Services API

e System Services API

Open Systems Architecture is defined as an architecture for an open system using open
specifications. It consists of a structure of interconnected functional subsystems (i.e., black
boxes) using non-proprietary communications, based on open specifications for interfaces,
and providing high level standard services. The interface between the application software
and the underlying application platform must be based on an Open System Application
Program Interface. To be open, the architecture must be extensible through the addition of
subsystems, services and resources following open specification rules.

Open System Environment (OSE) is the comprehensive set of interfaces, services and
supporting formats, plus user aspects for interoperability or for portability of applications,
data, or people, as specified by information technology standards and profiles. (POSIX
P1003.0 Draft 14 Guide)

Operating System (OS) is the layer of software that isolates services and application software
from the application platform hardware element. The OS provides services for at least
management, allocation, and deallocation of the processor, memory, timing and
input/output (I/O) processing resources for application and service software.

Operationally Ready mode is a system condition wherein most system hardware, software,
human and procedural elements are functioning correctly, but not all subsystems are
configured as needed for a mission to be performed.

Portability is the ease with which software can be transferred from one platform, application
or information system to another. (POSIX P1003.0 Draft 14 Guide)

Profiling is the process of selecting a set of one or more base standards, and where
applicable, the identification of chosen classes, subsets, options, and parameters of those base
standards, necessary for accomplishing a particular function. (The profile selection process
is discussed in section 6 of [POSIX91)).

A7

Protection is defined to mean that the architecture will limit the effect of abnormal
conditions in design elements at run-time to just the affected modules or as a minimum
will limit the propagation of abnormal conditions.

Red-tagged mode is a system condition wherein sufficient system hardware, software,
human or procedural elements are failed that the system cannot operate at all.

Requirements Architecture is an architecture that can be tailored for design
implementation based on actual system requirements.

Robustness is the measure of a system's ability to support continued functioning under
abnormal operating conditions.

Safety Critical Function is any function which has an associated condition, event, operation,
process, equipment or system (including software) with the potential for major injury or
damage, adapted from [SSP 30235].

Service Subsystem is service software on an applications platform, which provides
transparent services to the using control or data processing subsystem.

Service functions are usually widely replicated in support of many control or data
processing subsystems. This wide replication of functionality is a key determining
characteristic in defining an individual process as a service in this methodology. Services
are critical to system operation, not to mission or vehicle operation per se. An example of a
service function is a Report Generator since many applications and control subsystems
must generate reports; here, they call on the report generator service which knows how to
look up the table defining the applications/control report, how to format the format for
completion, how to find the data to fill the report fields with, and how to route the report
for distribution based on a predefined distribution list. High level standard services are
services such as timing, distributed data handling and fault tolerance, which may have
different needs when viewed as a multi-processing system than when considered as a single

processor system.

Source is the originator of data passed across a logical interface.
Space Data System - see Data System.

Space Data System Services - Data System Services.
Space Generic Open Avionics Architecture (SGOAA) is defined as the target open

architecture standard being developed to provide an umbrella set of requirements for
applying a generic architecture interface model to the design of specific avionics

A8

hardware/software systems. This standard defines a generic set of system interface points
and establishes the requirements for applying appropriate low level detailed
implementation standards to those interfaces points. The generic core avionics system and
processing hardware architecture models provided by the standard are robustly tailorable to
specific system applications and provide a platform upon which the generic interface model
is to be applied.

Standard Data Services Manager is the interface handling subsystem that manages the

services that process requests for interaction between sensors, effectors, applications
software and other services.

Standard is a document established by consensus and approved by a recognized body, that
provides, for common and repeated use, rules, guidelines, or characteristics for activities or
their results, aimed at the achievement of the maximum degree of order in a given context.

Standardized Profile is a balloted formal, harmonized document that specifies a profile.
(POSIX P1003.0 Draft 14 Guide)

System is defined as the composite of equipment, material, computer software, personnel,
facilities and information/procedural data that satisfies a user need. (Electronic Industries
Association Bulletin SYSB-1)

System Hardware Architecture is an architecture consisting of the set of hardware resources
in a configuration of distributed computers, memories, buses and network elements.

Some of the characteristics that determine the nature and requirements for a system
hardware architecture are the number of processors, their type and topology, the speed and
size of shared memory available, the local memory of each, the bandwidth and access to
communications media, and the interfaces available for use by people, applications and
platform software services in the hardware.

System Software Architecture is an architecture consisting of the elements and interfaces
between software components in a system.

System Services Software is common software, independent of application software, which
is needed to run applications software and enable it to interface to data within a system or
across the EEL. This is similar to the POSIX entity, system software, which is defined as the
application independent software that supports the running of application software.

Task is defined as a software entity that is executed in parallel with other parts of a software
program to perform an action. [BOOCHS87]

A9

Understandability is defined to mean all requirements related to a subject can be found and
viewed together, and individually and jointly understood by the analysts and designers.

A Utility Function is a function which if it fails will result in no control loss or unsafe
condition.

A-10

APPENDIX B
ARCHITECTURE SPECIFICATION TABLES

B. ARCHITECTURE SPECIFICATION TABLES
B.1 INTRODUCTION

The data presented in this appendix provide examples of potentially selectable specific
performance parameters, and are excerpts from [BOE91]. Satisfying these performance
parameters, such as less than one second for real-time transport delay, is a design
implementation requirement dependent upon the needs of a specific system and as such are
outside the scope of the SGOAA.

B-1

B.2 MISSION AND VEHICLE REQUIREMENTS

[BOE91] was prepared to provide avionics flight data systems (FDS) requirements as shown
in Tables B-1, B-2 and B-3. They are applied to the following four classes of target vehicles:

Class 1 is made of large manned vehicles consisting of independent segments
with flight critical real-time needs and with life support, such as the Trans-Earth
Injection Stage (TEIS - Piloted), the Trans-Mars Injection Stage (TMIS - Piloted),
the SSF/ACRYV and Orbital Assembly Nodes.

Class 2 is made of large manned vehicles consisting of a single segment, reduced
real-time flight critical needs and life support, such as the Earth Crew Capture
Vehicle (ECCV - Lunar), Earth Crew Capture Vehicle (ECCV - Mars), Lunar
Excursion Vehicle - Piloted, Mars Ascent Vehicle, the Mars Descent Vehicle,
Lunar Habitat/Lab/Support Modules, Martian Habitat/Lab/Support Modules,
NSTS Shuttle Follow-On, Personnel Launch System, Lunar Rover (pressurized),
Martian Rover (pressurized), Ballistic Vehicle - Mars, Ballistic Vehicle - Lunar,
and Lunar Transfer Vehicle - Piloted.

Class 3 is made of smaller manned vehicles consisting of a single segment,
reduced criticality requirements, possibly with no life support, such as
EVA/EMU, Manned Maneuvering Unit - Phobos Type, Lunar Rover
(unpressurized), Mars Rover (unpressurized), and Modular Space Sub.

Class 4 is made of unmanned space flight or planetary surface vehicles or
facilities, such as the Aero Assist Flight (AFE) experiment, Communications
Orbiter, Earth Orbit Vehicles, Lunar Excursion Vehicles, Mining and
Manufacturing Equipment for Lunar or Mars, Mars Sample and Return,
Meteorological Stations, Observatory Equipment for Lunar or Mars, Robotic
Rovers for Lunar or Mars, Science Equipment for Lunar or Mars, Site Recon
Orbiter, Trans Mars Injection Stage - Cargo, and Lunar Transfer Vehicle - Cargo.

B-2

1 1] | 14
eoBlns Ase| 10 eoBpng Al ! A euUBLIUN 2
[©)j OU puR 2 10 | sessEp M 30 OA peuuew LT iy
poddns e} Yl pue sjueluelIbel oW ooupne 0 A 8 g sseto| ov
yoddns e}l Yym pue sjuewiesnbes ew M A pouuBw [] (o |
w
2
ook 3 (AJWI SIRI] o¥ |
AdN/M U000 UOWLLI0O 'SOA » TAOW) SINL] LY |
ok 3 [ENCA
AOV YSINIrNeVIH sk pus) [
popnis 1ou “sek y []
POIPNIS 10U 's0X y 3
perpnis 1u ‘sek y 9%
[) [3
S0A F] [3
[€ anl
sk 2 (3
ok ¥y 3
sek ¥ gl ot |
woneA youne| L 2z
odR 368 it ¢0K
popnis 10U ‘sek y
PoPpNIs 10U ‘eeh ¥
oA F]
PopNIs Jou "sek ¥
PoPIs 1ou 80k ’
ook 3
[y
popnis Jou “sek 3
ook]
POIPNIS Jou "seA ¥y
[]
SOA 4
dALYM UOWWOO uowiwoo ‘sek y
MWW AN) '8k 80A]
d-AF VM UOWWI0o UOUILIOO 'sek 4
sok 2
e HsodnO 1MW) [
sek € [ERNLEIT
potpnis 1ou 's6X ’ 013[6
sok 3 SIeN 'A0D3] ¢
ok 2 18um "AD03] L
POIPNIS 10U ‘004 [QO sucEOuNUWOD| 9
wiop Apnis ou ok » 34v| ¢
SSY10 uewe|3 eIeMpieH Wil v
(vAa3 (wowBes ojSuje (wowBes-jynw (VA3 ‘pevuny) {mewBes (woewbes
oewey ‘pouuswiun) Op seeiy | ‘peuuswiun) @y ssmo | ‘peuuviun) vy sseid cosed [ojburs ‘pouuniy) Z seu0] qunw ‘peuuvyy) | sse)
¢
16/04/8 ¢109-cu2(002) vebeuny v Y T
uopjueqg ssv|d AphiS S|oIYaA ©1n)oa}|ydly 89|UOjAY DMLVS Bupeod OSPNSVYN|!
[1 [l) F] | 3] |< [] v

uonmuya(sserD) APMIS SPNIA JIMIDINYPIY OSUOIAY DMLVS “1-6 2[qeL

B-3

{%ﬁ&o 90| QIO 1WUN] M7 O] suopmied() eoepng Aimeueq
weydy eoa.toﬁc!._. 00848 [SUOHEN ‘S1SN POIORG-SAYSA UOIRINIXT JPUNT ‘d-AT)] Wy wpew 816 138 § U] gy
POV SAYSA J08UR)) SN J-A LI 10 @3 M 037 659 'PIOJI8 '900Z UORdO S enjssaiBly 2 eoul 7y
) AN L NINL| ollIn] - SONSA I0PURI] SR DAL E 91 o5ad KS[E M8ID 10} UOHOSS SRHRIIIUOD PU® TUCHRISPINIOD 'PIOINE 008 3
| repg-euiL GIAL ; [oouwusiiew mo| pus KErquNes WO Uik ASUWPUNPe] [Aeied 10 HeAS] SOTIu (12
uf e 3euw) g1all E E SNbes SUOHe36d0 SOBPNG UNHI PUS SeERYd IUSOISCLSORY "SesRd inoni P 910U T
oA Jopue | 05w ALE SOI{eA Wedse(] &)y AGH : JOPURINIICD 84} Of SUORAO PUW NGIO/EORNNG O} POQE 1H0] SnDeI serdoupd 1oqy uss_.mh.
PA A [SUN0838d "ANJ SPIIOA WEOSY WV AV E SINPOILON 10| By) 10) SSP [ST K PIOYNE ¥ ou| Ty
PURRWSGNIRGONd] | WO SN o1 oWl i € UOROOE | JOA G8Ad)P0 WOl SINWUSWON € S0uf (P
j Poune] jeonied '§d POIORI-SPNISA BIRIL WURY ‘d-AL) Wewpndxy W1 Weesvorey 33V| SEUI UG (69q | PUW Z1 0 T1 9 1pI0 $60USISN [ISA IXIO 2 #10U| OF
tA® suopound poddng UCe PeIueL] PUS WINL JO Buwonied 1°2€'Y | IOA X30 908 | oKu] 68
" - T T A ey o
% T ok - 601 SPON MNGI0 [z} 8poN Aquiessy ALN| 9%
soh "w omn L wesAS 8poN MU0 | spoN Aqueesy AL 98
oK W sk wooge) ONd 666} SN0 | AHOV/ASE| 1e
L] ou O i wok T 0 V) 3 WESNOIOY) ¢ |
368 Ym X 03101 § 1o MeiS " oT T [aTE] 8d[T¢
J86 U ok MO0 + GPIOY < A o3 i o03 SWUS BLGN APY] (1 |
i SH0fyeA oddig peuusy 0NO[06
SRR R I8 np 5 T i " N T—
us| 0004 sok [3 B 0001 olnD ALW "W 102) d peayinessud- 16A0H UOENNUOD ®
qOH VSO G o LY oiRg ALW W 7102 9061 soepng Knpuvig $60idUn - A0 SOUNOG| LT
QOH USPON U o YaeC B 005 ONRD AL Al 7102 Tel AdAIW JOA0) 8O0 1| 9T
s 9 ou Y512 0 Meio ofND AL y102 VA3 ‘ TWAN 83Ar-90904d)
(] 91 s dn ek L] "W B3 AL W rioz 661 SORjing KRl |)
910 Maio ek 1+ P Mo N o8RO ALN FioZ Co) ADOTAIN ; #ofeA ka3 3 ALN
ALN G g jo men 98k WU 001+ 0 Meio L O3 Vd VO vioZ 900+ AVWAQN TALG SPRISA UORInONg UreiBoig ALN
LOPOU UINJRI Ui | UORmITRLIS/G M8IS ONT o1 sok oFvdvorm | Wrnoz 5661 AJWSISLBINL = SORISA eI AN
ou o] ofRg ALW A ¥i02 SoNpNG d__ | INL wome 73
JOHGIO Uy ou uinje) eowLies s Wn. s 0T VONT 8061 waey ¥ oo 61
ou WAl Al A 1002 B 1)) TAINLY 9%GiQ suogmormuaLoD | 91
sk A] W o v102 AJN (ALS) TPeuuwa) w0 Woosl| 1 |
ou "W Al " ON1 9061 HGIO Uuooey eNE| 91
ﬂ s k?.ﬁ!x POMSISV/S0QONNINN] §1
e s poe s L S T T S e e
usioo v o8mD AL w Wo0s] vees L eoeying medeid |) -soaodf S
QUH U o oz L] o83 AL "W Y002 VAFSpg d | il WA T
008}-2H/00I§ G 10 MO " o) AL Al Y002 1661/506} owpng Kmpueig b QeI sum| {{
©eX g o Mo " ofind ALY 7002 A003 (ALS) . ooeA ki3 yived weiliold ALY 01
AL Gk qeHAepuY| WG] PUv g O Mes0_| Wi OZ 90 0} OT1 "k on Y002 €661 a-A31 (el " HOYSA UOpINONT WeiBold ALY} 6
LOPOU UISI ik ook WSy 07101 epou sek 03N 002 €664 d-ALVALSY w, SORIA ISjSURIL
o A oBR5 ALT W 2002 18 NdAST :
sk "W ALYk #67 jenQ A on %002 d-ALVALSY i
i
§
snoAzepuey poddng e[Aieaeq oBied Jojsuns) oBIe) Aiqweesy soude-v) | uojesiuqio | (M 001 | (e)v sesug (c) odAy eend g wewo)3 B4 [v
3
Pe}Bu|PI0O0I Jou - Alsujwijeld 18/41/8] pejepdn £196-€42(802) vedevery 'y Y z
siuawalinbay 1og UOISSI 2JMOAIYIY SOG4 DMLVS Buyeos OSI/VSVYN[!
s
] T 0 H] 3 3] E) v

sjuawaimbay 19 UOISSTA SINANIIY SAI DMLVS T-4 2198l

0%
or
[14
Ly
LK K3
oflew W G
ong W vy
54
0oy Ty
oLy
5 or
68
A - . " s coab s e R L1
(7 W) S oW (sejNLl [98 |
7] (7] [T " SJUGLISS |SojUNM 3
L "w AHOV 2Ue08 SHNYS/SId/AHIY [
] 0A [oNssed [33
"W 4880310 s0A °N 468 Uwm Te
W 488/0319 sk Gousds/edo papueiXe 486 UWh 3
[
UOIIONASUCO W "W T Qe Y [[3
(1) NINL A A [l [14
1) NINL w A A [
[T [T [T $0q0Yd ST
P009-001'001 06 Al Al W woume snsed |
77 A $OUpINS YLIWe O} SA AdN Yim [53
Y [soujns eueid o} AdN 4 TT
s Al 2 suesedueysoado wd | wewee easied | (L
(1) NINL (2] $Al oA [("4
wdwes esjnbow oW1 9 eoujins jeuwyd O} [19)GI0 UM []]
" " W W ol
7] (7] 7] scusseideeyeqoado wid 1]
A w A uﬂ!‘. el L)) 91
s " L
UONONISUCO (7] " L QUI/QeH Upm 3
dA oody " N A Al z
“#Kip 081-97 o "W W T T
[[T 60%}INS Yuwe O} Lo ALT 4w ol
oo 808LINS Joun| O} ALT Yhm 6
A 7] (7] 903 (NP Weuisie oNssVd | @
I3
o “cuese.defeywao/do imd) ?
[]
edQ sowpng (3) pusosy (9) uas00q UO[IPANSGO PHUIO Jojsuni 1900 y
[
4
penujuo) -1es Uo|ss| 1
TS
d Q N [L] 1
A—umn—ﬁﬁﬂoov

sjuaurarmbay 3G uoIsST 2RIV S DMLVS Z-d 2198l

B-5

i]
oA Al A A o N Qi [Al i Vioddng Kispes oBuvy | 1S |
Tvo/kemopB eBpiqikemeed : cowpoys wwod gy oea B9
SIOPNION ONIYS I #d0 Bujesaus_ 1 “weakodeq 119]
UGH [I99H O} woddng seojaseg peoiied 09
»da% 032 i Bupeuiod Aneweiel | ov
TOWIDGASRI/IOpUOTSUe] Banuicd pue Ms wuuewe | f Bupoeil (o
[TodaN OF O9PIAZ sSuueye g Buutod pue ms BuuSie | _ SpopneoepiA_ | THUN) UORROUNALOD | IV |
UOW WIveH O} i woddng SUCHENUMINLIOD o7}
[Wwewles/| : PN UONQIiI] ewod [S
ME/SOAIRA G2 [4 ORUo) KNOG JeMed [y
GO WH99H 0 Vioddig [01)U0) Md [S0LI8I3 | TF
MOSOANA g sewp:| 09 i ORUG) WL | T¥
SOAWA 001 P 008 cipheaD i 86103 (17
UOWN e H 0 | woddng yewiucijaug | oy
SOAIA 28 Z $evpt| (2] M_*“ uoyndolg Kreykny__ | 66
09 | $88p:| (] odo Bujenaurs— } o) opeey |96 |
SuBUS/SONTA Zp | esopt} “ouluerg i ooy uopndold U | Z¢
SONVA 7 ssvpi| NUWIOZ i P wegedod [9F
UON GI9eH OF i Vioddng uofsindoid [5¢
TO1eNAUN/OAL UOW §OSH OF . Woddng {6AuoS J010eNa | FC
vojsndold) Z seepi [) i lonuogHLIw SpnylY | £F
FOTWI00 ¥ ULSP eprine O} g s] | PoD Whed |26
SouwpnB o zeawp| aeyRpe 0) odo Bl b Wamood | 1%
Buiee)s uiveq souepnd o) Zesvpi} WTW/IOpNI OF odo BujumiAine oATepUeH | 0% |
wouwpinl 6} “souspe/BuBw Weweleusyy 106 UCIPN | 62
101000 WBs} O LY 00U ouepIND__ (92
PROIAP g/eOUSPIRD O} | sswpi} 05y UOeBIANN_ | 22 |
UOW Yi#H O} “poddng 29NO | 9T
o woy sSvpi| [QUINP) 000E O 00E BaIoWoN UeeH | ST
WowBesMe0) Y —WeweleeN eeH | 72 |
wewBesoz ! AL Buicyion sunsks | ¢t
Z $e%pt} 8N 991 aeiane | ~ByrrBupuenbeg suogedo | 2
8022 voddnig BN weieks #9fUSA [17 |
ORI PURPG 2+ T ¥ 0T
1v0/ oD pooked TBUSI e edxe [
1VOikemopd SIS{OINI00 SPOUPUNOID [}
$5800% 010UIe) PISOGN0 Z 1 12| L
o SuoAg Poddng OPON | 91
(73 W WOIAB 648 oA OF UORonpe Uel § uoReMUIS ¥ DUl | a1
WewBo /4By 52 —_ BuBlinRs 90108 VWDOIPARALISRE KiceiApY "UopneD ‘Buiem__ [i
SO0 9 9 Wl SGIOA M8 NS PG wnduf puio Wwngeaonuod_ |el
JOQUIBLLE M5 POQUOL L L E ¥| ZL
eyt Lz v [
ssep 1een ' ¥| 01
soewsanbey soeiel| Z'y] 6
(]
sdAysequny VORI UNURLIOO Bujuonpuod T} Jequinuediy r
uIne €oPejje KBojodo} UoUNIO] o o | e €osUse 10181800 9
] sovlioW| Qup soujiep)] soRjiol eoupel oy T]
2
16818 pejepdn ¢
(iuawbas-pinw) ‘1 sse1D Apms €190-6L2 {902) ueBeumid Y 'Y z
siuswaJnboy 90e}91U PUE 2I|AISS p UORIBS UMDYV SO DMLVS Buyecd OSF/VSVYN |
F] T T | I | T H 1 ° i | a E) v

sjuawaIinbay] adeyIdu] PUY 3d1AIAG AMPAYIIY SAH OMLVS "€-d dlqel

sjuauraxmbay 30eJIBU] PUY SDIAISG SINPANYAIY SAL DMLVS "€-6 2Iqel

s
] N W A N A o A W "] .M A 5 |
Uo(seAU pows spenupfoquis Runossjfosnd o8n (5
Uojsspu [SINSOALIRIeP [T pow oSN i 1]
[
20 uojesp 80 22 |8I0ALISIOP LT opewnupyIoquis o8N [12
uojsep poul GHewNY o
Uojsefl N 209 pow opeuinu UMOPANE T | Z/t opeiBuMp eypdn oainos_| Iy
[
A Aot Ao} an ¢ (LT L] opewinu 7 speiB (12
A Rejespiojsspiip) an | »o| PR | opeiB w
32
Kot BN 20] opewnu MOUOUSI:§-E ISy Z opeiB Tr
Rejes 8A O} [opmuny SNOWOUOI:G-C Z op®. 12
or
AT o an i [SIUSOAIIIOIeP (LT UL SOWOUOI:9€ | opei 3
A RejeapiBiy EL) (LT opeiling $HOWIOUOIN:§-€ | oo 3
0k Rejospibiy N ¢ SIUGOALISSD LT opewnu SOWOUCHI:9-C } opei8 I3
7 Kiojos W 10 uby opewiny SOWOUOINe:9-E } opiB [
[
SN 10 7 |
A By anN g |EIRIG0ANI010P yBy opewny SNOWOUOY:0-C ope [33
EAT WO O § [RIJUSOALISIOD iy opsunu SNOWOUOINN:G-C ope. [3
A [BN E [SIoALISI0p ub opewL ol it
o VoSS RIA) BN E OIIGOALISIOD (LT OUSWNUOqUIAS WIGWOUO g€ [
UG{SSALI BN L ubiy uby CLOWNUOROQUIAS NOWOUCT:g-{ ca
5 [ang [SIIGOAL IS9P By yBiy Kiea opewnuHOguAS OWOUCHIg¢ | ope wen w
T UoISeILI/I) an g WIReoAuIeep [LT] SJOLINOY 2 OUICUCI-g-¢ t opeiB #0IN0E T
14
RSSO SSII/N} BN 002°Z opIeuIng pivoquoR)y_ | snouw 9 60 [
uojesAu oIied iy By Kea OOLINUONOGUAS PINOGHORN | SNOWOUCHW:9-C | AWNoes/AoRAid 1 (73
Wi BN S offewIny SHOLIOUOINY:§-§ | ({2
T O[S SRL/I} BN 20 TIe0ALISI9D B opeuIny OWOUSI:Z | | Anossjioend i opeil i __oaweo w
oW 052 13
SdIN 091 oz
[oLy SHSUINU/HOqUIAS Rypnoes/Roenid 81
uo[SeRLIAY Siowery Rpnoesifoend ol
[
N 0052 OpSUINUDYOUAR yedxe KpinoesjRoead]
5 uosEAY 8N 002°2 LT yBy Kiea \ /OOQLAS quis wen §
T Rojus [1 opeil y
[8N 0F L ybiy Aea Spewnu Kynoes/foonsd 1080
4
'€
0
€
_ []
HpUoY JOAIN pUS Bujouenbes (
[idnueiy Riwaii0 XBojodo} oBo; wduBnoay | edk Busesoord v joiuoD wejsls Kjnoes poddns ool |1 1epueleln |9
(=T oJiAIee [T oofAlee oojAlee aojAlen oojAle8 oAl [T 034Al00 : B]
7
3
panuUiuUo) | Sse|d ¢
1
X M A 0 1 s] S d 0 N 3
(panumuod)

B-7

B.3 PERFORMANCE PARAMETER REQUIREMENTS

A potential set of FDS standard sensor interfaces are shown in Table B-4. FCl1 is defined as
Category Flight Critical (FC) Level 1. Categories and levels are defined in Table 2-1.

Table B-4. Sensor Interface

NO. HEAL-TIME NO. NON-REAL-TIME
SENSOR INTERFACE INTERFACES INTERFACES
FC1A, MC2A, SC3A MC2B, SC3B, NC4B
Data bus compatible type 0 to 200 n/a
Data bus non-compatible n/a 100 to 24,000
type
High data rate type 0to 10 Oto 10

A potential set of FDS standard effector interfaces are shown in Table B-5.

Table B-5. Effector Interfaces

NO. MISSION
NO. FLIGHT CRITICAL AND NO. NON-
EFFECTOR TYPE CRITICAL SAFETY CRITICAL CRITICAL
INTERFACES INTERFACES INTERFACES
FC1A MC2A, SC3A NC4B
MC2B, SC3B
Data bus compatible type TBD TBD TBD
Data bus non-compatible TBD TBD TBD
type
total 50 to 500 25t0 1,000 25to 100

The Bit Error Rates potentially applicable shall be as defined in Table B-6, among onboard
users and between users and Communications and Tracking C&T.

Table B-6. Bit Error Rate Characteristics

GRADE
CHARACTERISTIC J i Hi
Bit Error Rate (BER) 10E-12 10E-8 10E-5
Header BER 10E-12 10E-12 10E-12

A potential set of FDS message handling priorities shall be as shown in Table B-7.

B-8

Table B-7. Priority Message Transfer Latency (Maximum Time)

MESSAGE PRIORITY FC1 MC2 SC3 NC4
Background TBD TBD TBD TBD
Normal Periodic TBD TBD TBD TBD
Normal Event TBD TBD TBD TBD
Expedited TBD TBD TBD TBD
Emergency TBD TBD TBD | TBD

The FDS shall provide for implementing throughput within the range of values listed in

Tables B-8 and B-9 for normal operation of applications available to service requester.
Values shown assume no interrupts or other network dependent overhead.

Table B-8. Processing Throughput Capacity

MIPS
THROUGHPUT PROCESSING MINIMUM MAXIMUM
Critical, Real-time 03 627
~ Critical, Non-real-time 05 160
Non-critical 1 100
Table B-9. Network Throughput Capacity
MBPS
INTERFUNCTION NETWORK THROUGHPUT | MINIMUM | MAXIMUM
Critical, Real-time local network 1 10
Critical, Real-time internetwork 1 10
Critical, Non-real-time local network 05 10
Non-critical local network 1 10
Non-critical internetwork 10 150

The FDS shall segregate critical data (FC1A, MC2A, MC2B, SC3A, SC3B) from noncritical
data (NC4B) and provide data protection. Potentially allocated FDS memory space available

B-9

to software applications are listed in Table B-10. Application space addresses may be

memory load dependent.

Table B-10. Allocated Memory Space

MEGABYTES

ALLOCATED MEMORY SPACE MINIMUM MAXIMUM
Primary Volatile Memory - Critical 1 350
Primary Volatile Memory - Non-critical TBD TBD
Primary Non-volatile Memory - Critical 0.1 360
Primary Non-volatile - Non-critical TBD TBD
Secondary Memory, On-line - Critical 100 2120
Secondary Memory, Off-line TBD TBD
Secondary Memory, Communications Buffer 0 1500

The FDS shall generate and distribute timing within requirements listed in Table B-11.

Table B-11. Timing Requirements

TIME RESOLUTION ACCURACY
(MILLISECOND) | (MILLISECOND)

Local Network:

Time Reference TBD

Event Timing TBD

System Time (e.g., GMT) TBD

Mission Elapsed Time (MET) TBD
Internetwork (global):

Time Reference TBD

Event Timing TBD

System Time (e.g., GMT) TBD

Mission Elapsed Time (MET) TBD

B-10

APPENDIX C
ARCHITECTURE REVIEW COMMENTS AND RESPONSES

APPENDIX C
ARCHITECTURE REVIEW COMMENTS AND RESPONSES

C.1 EAGLE ENGINEERING, INC. COMMENTS

Comments were provided by Eagle Engineering, 16915, E1 Camino Real, Suite 200, Houston,
Texas 77058, (713) 283-6000, dated May 27, 1992 are provided herein. These comments are on
the Preliminary Draft of the "Space Generic Open Avionics Architecture (SGOAA)
Standard", dated 2 April 1992.

This activity is an appropriate one for SATWG to sponsor, and final adoption of the product
as a standard should provide excellent return on the investment in its preparation.

C.1.1 GENERAL COMMENTS

General Comment 1)

The difficulties of dealing with an open Avionics Architecture when most onboard
systems can (with the exception of the organizations representing them) be classified
as "Avionics" are very real and apparent in this document. It will be some time
before system engineering organizations evolve which can adequately get to grips
with defining an overall vehicle architecture and to be able to take advantage of a
standardized architecture—-however, this document should be pursued vigorously as
one means of providing the necessary education.

Response:

We agree, one purpose of this document is to provide sufficient technical description
and rationale to serve as a strawman for coming to grips with the necessary avionics
definitions and architecture for all space avionics and an overall vehicle
architecture. Use of standardized architectural elements appears essential in the
current funding constrained environment.

General Comment 2)

The term "function” as used in Table 2.1 "Critical Function Categories" needs to be
rigorously defined in this document. The SSF program has shown the futility of
attempting to define redundancy, reliability, fault tolerance, etc. requirements based
on traditional subsystem requirements. This proposed SGOAA standard clearly
recognizes this, but stops short of providing a clear definition of the word. With the

C1

continuing blurring of the distinctions between traditional Data Systems, Avionic
Systems and Non-avionics systems the term "function" (or some other term
meaning something like "a complete path from command initiation to physical
result”) becomes increasingly important in the interpretation of requirements and
must be clearly understood by all involved in the design process. An example might
be the transport delays and timing constraints given in the document. Do these
apply to the total function or to the.- Avionics interface as defined in Fig. 2.3?

Response:

Agree. Function has been defined in Appendix A. In addition, parametric values
such as transport delays and timing constants have been removed from the
requirements section. These parameters are design requirements to be based on a the
needs of a specific system and as such are outside the scope of a generic architecture
such as the SGOAA.

General Comment 3)

At this stage in the development of a document such as the proposed standard, it is
often desirable to provide information of an explanatory nature which would not
necessarily find its way into the completed version. This early draft could benefit by
additional text of this type in several areas. It is suggested that where the
information is obviously tutorial in nature, that the discussion is so identified, e.g.
in italics or different font, etc.

Response:

Agree that explanatory and rationale type material must be provided. This
document is equivalent to the .0 document of POSIX, in that it attempts to provide a
full technical description of the architecture. This document is not the standard per
se to be proposed; that will be provided in a separately released document with just
the specification data needed and appropriate to a standard. An executive summary
and briefing materials will also be published.

General Comment 4)

It is suggested that verifiability be considered in this Standard. Difficulties and costs
associated with verification have become increasingly more evident in the history of
NASA programs and, indeed, verification is currently a major issue in the Space
Station Freedom Program. Consideration might be given, for example, to promoting
the partitioning of flight software into simply “critical” vs. "non-critical” parts (or

C-2

perhaps into the categories of Table 2-1) for the purpose of verification. Emphasis
would then be put on the preflight verification of the more critical parts, with
possibly the exclusion totally of verification of parts with little or no criticality.

Another application might be the consideration of verification in deciding the
command path architecture discussed in Section 3.4.1.1. Although from one
perspective multiple command paths provide “robustness”, they also impose a
verification penalty which may be intolerable. in many cases it will prove more cost
effective simply to provide redundant strings of single command path hardware.
Response:
Verifiability is an important facet of using a standard. Whether and how to include
it here is an open question.
General Comment 5)

The document provided for review contained computer generated diagrams which
were totally illegible. This should be corrected in subsequent versions.

Response:

The final version of this document will be submitted to a formal documentation
publication process with no poor quality diagrams at all. In the interest of speed and
cost minimization, the drafts are published more expediently. Every attempt will be
made to provide quality diagrams, however, multiple stages of reproduction cause
sufficient degradation of quality after the distribution is made to first delivery sites
that blurry diagrams may nevertheless occur.

C.1.2 DETAILED COMMENTS
Paragraph 1.0

The term "open architecture” has become fairly standard usage in the SATWG
community, but for others it might be helpful to provide a definition here in the
Introduction.

Response:
Agree. "Open Architecture” is defined in Appendix A.
Paragraph 2.1

Fig. 2.3 defines the avionics boundary as excluding the sensors/effectors, etc. This is
a reasonable approach at this stage but might be better accepted if the title was more

C-3

limited, i.e., "Avionic Core" or "Avionics Data, Command & Control Architecture".
Also, along the lines of General Comment No. 1, it might be worth pointing out in
the discussion that from the point of view of defining an overall vehicle architecture
there is no essential difference between how the Environmental Control System
(ECS) and a traditional Avionics System such as GN&C should be handled.

Another bubble which might be added in the outer area of Fig. 2.3 is
“Instrumentation”. Although most systems have instrumentation to some degree,
most do not have enough for what has been called "development flight test” in the
past, and other, non-electronic systems such as structures must usually have
instrumentation added for any meaningful in-flight monitoring.

Response:

Use of the term avionics core architecture is an excellent idea. Determination of the
differences in handling each avionics end-user application function (such as ECS or
GN&C) requires architectural analysis. The results of such analysis would then be
reflected in the overall avionics architecture. Note that the Architecture Interface
Model treats the interfaces between the hardware and software in each applications
subsystem the same. For the purposes of clarity, each key subsystem in the avionics
should be explicitly identified in the avionics architecture diagram to avoid neglect
or the appearance of neglect.

Agree, instrumentation such as development flight instrumentation (DFI) and other
key interfaces need to be and are being addressed. The differences (in any) between
developmental flight avionics and production flight avionics also need to be

considered.
Paragraph 2.1.1.3.2 (third bullet)

It is not clear why the assumption is made that sensors and effectors have embedded
firmware. Although many do have terminations compatible with data busses such
as MIL-STD-1553, some do not and the latter may be more cost effective for simple
applications. (This is not to promote the proliferation of MDM's with A/D and D/A
conversion capability, but the option to accommodate them might be advisable in a
standard such as this.)

Response:

The intention was to describe the most general (i.e., the "shopping list" approach)
case of sensors and effectors some using firmware and some not, with the option

C-4

provided to use an MDM to perform some signal consolidation and pre-processing,
without specifying whether the specific low level processes such as analog-to-digital
conversion are performed in one or the other. This will be clarified in the next

release.
Paragraph 2.1.1.3.2 (fourth bullet)

There is another perspective in the realm of "intermediate level processing” which
might be considered. The position might be taken that the time has come to do away
with "intermediate processing” altogether, "smart MDM's" included, considering
the increasing compactness of flight computers while simultaneously providing
ever increasing processing capability. Such an approach would depend on
input/output/conversion processing in the "back section” or background of the
main computer (SDP), and the primary advantage would be a reduction in the
number and types of different onboard computers. The main disadvantages would
be a more difficult job of integrating all software in the main computer, and a de-
emphasis on an architecture which is "backward compatible” with existing
hardware, primarily sensors and effectors.

Response:

There is an obvious computing trend toward distributing computational power out
to the users and end devices needing processing, rather than to continue relying on
centralized computing. This avionics core architecture takes no position on this
trend. The core architecture allows use of either centralized, distributed or some
hybrid by providing all the key elements to support either, in line with the idea that
the architecture is a "shopping list" of all (or at least most) potentially needed
elements which will have interfaces which have been apriori verified to be
compatible or interoperable. Note that a centralized computing scheme is just a
special case of a distributed system with just one computer providing all required
functions instead of multiple computers providing the required functions in the
distributed case.. Use of a specific distribution scheme must be determined on a case-
by-case basis depending on the needs of the specific mission being addressed.

Paragraph 2.1.1.3.3 (sixth bullet)

It would be helpful if the acronyms used in Figure 2.5 were used in this paragraph.
(The terms "SDP" and "MDP" in the text are not used in the figure, and "EP" is used

for "effector processing” in the text but used for "embedded processor” in the figure.)

C-5

Response:

Agree, consistency will be improved in the next draft. Some inconsistency was
allowed to pass in the preliminary draft to avoid delays in distributing the document
at the April 1992 SATWG meeting.

Paragraph 2.1.2

The Reference Model Definitions section should be deleted in favor of a section
containing definitions for the complete document. It should be closely scrutinized
for omissions. "Systems Management” and "Function"” are two essentials.
Although the definition of the "Avionics System" appears to come from a reputable
source, it does contain several inconsistencies along the lines of General Comment
1) and efforts should be made to update this definition as acceptance is obtained.

Response:

Agree. The next draft will accumulate all definitions for the entire document in
Appendix A. Function will be added to the list of definitions. Systems Management
is not used in the SGOAA report, except as part of the phrase Data System
Management, which is defined in the report. Specific suggestions or
recommendations for specific definitions are welcomed to improve the robustness of
the terminology and semantics used.

Paragraph 2.2.2

Table 2.1 Critical Function Categories is introduced into the requirements with no
explanation as to source or background and appears to contain several arbitrary
requirements. Because of its overriding effect on Avionics architecture the source
should be given along with an adequate discussion of the rationale.

Response:

Much of this work was based on an uncompleted study being performed by Boeing
Space Data Systems. Parametric values such as transport delays and timing constants
have been removed from the requirements section. These parameters are design
requirements to be based on a the needs of a specific system and as such are outside
the scope of a generic architecture such as the SGOAA. In addition, Safety Critical is
being changed from a Level 2 criticality to a level 1 criticality. This critical function
table now is the same as is presently defined for the Space Station Freedom Program.

Paragraph 2.2.3.4.2

Suggest a different heading for this. The present one does not seem to fit the Control
Center or Prelaunch facility interfaces.

Response:

"Crew " was changed to "Human".

Paragraph 2.2.3.6 and following

It would be helpful if the rationale were provided for the values used in Tables 2-2
through 2-13. For example, the values of 627 MIPS in Table 2-8 and 2120 megabytes
in Table 2-10 seem large without some explanation. Also, units are missing in some
tables.

Response:

The rationales are not available. These numbers will be moved to an appendix to
separate out supportable material from material which may be correct but which
cannot be explained due to changes in supporting staff. See response to General

comment 2).
Paragraph 2.2.4.1.1

It would seem that if one grade of Message Transfer Service is "Required” another
grade could not be "Allowed". Perhaps a better pairing would be "Required” with
"Not Allowed" and "Desired" with "Allowed".

Response:
Agree, this has been changed.
Paragraph 2.2.4.14

"Autonomous" should be replaced or defined. Does it mean "Autonomous with
respect to the ground", Fully Automatic, or other?

Response:
"Autonomous” has been replace with "fully automatic.
Paragraph 2.2.4.2.4

Is it the intent of this requirement that "normal operation should be maintained in
the presence of two non-simultaneous failures in a flight critical functional path—

these failures being within the interface boundaries of the SGOAA?. If it is, then it
should so state

Response:

This is clarified in the update. It is now stated that normal operation will be
maintained for "failures within the interface boundaries of the SGOAA".

Paragraph 2.2.4.2.5

It is believed that a higher percent than 95% for Onboard Fault detection coverage
should be achieved during directed Health Monitoring tests. It is believed that the
requirement of 99% for Onboard Fault Isolation during normal operation will be
difficult and expensive to achieve. Ground rules relating these requirements to the
degree of human intervention, (if any), time constraints, percent of onboard
resources which can be assigned to the task, etc., must be developed before it is
meaningful to include such numbers as this in the standard.

Response:

Agree that fault detection is historically in the 99+ percent range for human rated
systems, and almost as high for non-human rated systems. This area is under study
by several groups, including the SATWG Vehicle Health Management working
group, and their results (when available) will be incorporated in future versions of
this document. The use of such numbers will be moved to an appendix.

Paragraph 2.2.4.2.6 through 2.2.4.2.8
Again, it is suggested that another "ility” worth including is "verifiability".
Response:

Verifiability is an important facet of using a standard. Whether and how to include
it here is an open question.
Paragraph 2.2.4.2.8

The selection of four ORUs seems a little arbitrary. This may be a trifling
requirement in some systems and impossible to achieve in others. Consideration
should be given to specifying this as a percentage of the on-board ORUs.

Response:

Agree, will be changed.

Paragraph 2.3.3.6

It is suggested that applications software to applications software interfaces, although
necessary in some instances, be discouraged because of implications for integrated

systems verification.

Response:

Agree. This has been clarified in paragraphs 2.2.2 and 2.3.3.6.
Paragraph 3.3

Again, referring back to Figure 2.3, it is recommended that Figure 3-2 have
"Instrumentation” as a bubble in the unshaded region.

Response:
Agree. Instrumentation bubble has been added.
Paragraph 3.4.1.1

Again, multiple command paths may "provide robustness” but do exact a penalty for
verification.

Response:

Agree, a necessary evil perhaps. This is a program dependent decision. If the
particular needs of a specific program do not require these multiple paths, they are
not required to be used. These paths are available for the general case. The discussion
has been revised to emphasize that there is only one physical path to be verified. The
multiple command paths are logical paths which also require verification should a
specific program decide to implement these multiple paths..

Paragraph 4.1

No disagreement was found with the guidelines listed in the conclusions; however,
it is believed that the value of applying the SGOAA concept to the assessment of the
CLL Data System is overstated. This vehicle has extremely simple requirements and,
given the same ground rules, most conceptual designers would have arrived at a
configuration similar to the SGOAA or derived one in a shorter time. This is not
meant to be a criticism of the SGOAA concept—just that a better example could have
been chosen.

Response:

Agree that the CLL is a very simple example, however, it is the most-real example —
tried to date. Also, while simple, it did work, which is very unusual in systems
development. The common result of developing a generic architecture and applying

it to a real avionics need is that the generic architecture must be so heavily tailored

to work at all with adequate performance that there is little left of the "generic-ness”

of the architecture.

Paragraph 4.2

The recommendations listed appear to be pertinent; however, we believe that one of
the more important tasks is the interpretation of NASA requirements (in such areas
as Critical Functions; FDIR; Reliability; and Maintainability, for example) so that they
may be written unambiguously in a form suitable for a standard. The present
document falls far short of this, but unless it is accomplished successfully, the
standard will not find ready acceptance. Also, it is recommended that verification be
recognized and addressed in the ongoing SGOAA development.

Response:

The recommendations list is not complete or validated at this time. Guidelines for

the unambiguous writing and interpretation of NASA requirements in general -
appears beyond the scope of this document. Every attempt will be made to make this
document unambiguous by providing clear and full explanations in it. Verification

is recognized as an important function which must be addressed. TBD

Eagle Engineering appreciates the opportunity to review this proposed standard, and we
hope these comments are beneficial.

C-10

C.2 MITRE CORPORATION COMMENTS

Feedback on "Space Generic Open Avionics Architecture (SGOAA) Standard, Proposed
SATWG Standard", as reviewed by D.M. Erb, 5/1/92

C.2.1 GENERAL COMMENTS

General Comment 1)

Title: The title might be modified in the light of the SAAP consensus that SAAP
ought not to be a "standards-setting” organization.

Response:

Agree. The title is being changed to reflect that a separate document has been
prepared as the proposed standard. It is also recognized that the SATWG is not a
standards body and reference to that capacity is being dropped from all titles. The
new title of the document will be "Technical Guide to the Proposed Space Generic
Open Avionics Architecture Standard".

General Comment 2)

Vocabulary: At this stage of the document, and with multiple authors,
inconsistencies are expected. I would recommend that for the next publication, an
effort be made to obtain agreement on the use of the terms: reference model,
architecture, architecture system architecture, architectural functions, model,
configuration, and standard. Then there are times the architecture and an-actual-
instantiation-of-the thing-itself-in-space seem to be equated. There is not a clean
development of the present document in these regards. NIST has struggled in this
area and I have some references that might help should arbitration be required.
Definitions, including that of "avionics”, would be helpful closer to the front;
alternatively, a glossary could be used.

Response:

An Appendix A containing SGOAA Definitions has been added to the next
publication. In addition the document will be cleansed of inconsistencies in term
usage.

General Comment 3)

2.1 I had trouble with this Architecture Background section. I believe it should be
crisper in the sense of showing the development of the ideas which support the

c-1

current proposals. If there were alternatives that were rejected, perhaps they should
be included. A roadmap of issues and decisions here might be the only figure
needed. There seems to be a redundancy with later material.

Response:

This section has been tightened up. The development of ideas is the point of the
whole guide, and would be difficult to summarize at this point. However, min-
summaries of ideas will be made throughout the guide at appropriate points. Rather
than rejecting alternatives, the development process was one of continual
refinement and evolution. The issues and decisions in the development process
were documented in [WRA91].

General Comment 4)

I have ordered a number of publications on avionics architectures based on work by
the Navy and Air Force. I will let you know if they seem to be pertinent. Also, I
would recommend that you check the SEI Generic Avionics Software Specification
document CMU/SEI-90-TR-8, ESD-TR-90-209 by Locke et al, for ideas. Perhaps the
work done by Honeywell in the "Future Manned Systems Advanced Avionics
Study" published January 1992 should also be referenced.

Response:

We are continuing to follow any other architecture-relevant activities, and are
interested in understanding the details of the advanced architectures being
developed by the U.S. military services, which have been considering this for many
years. The referenced documents will be acquired.

C.2.1 SPECIFIC COMMENTS
Paragraph 2.1.1.1

The second paragraph does not seem to relate to the rational of the first paragraph. I
need some help to understand it.

Response:

The reference to software is intended to reflect that the functions identified appear to
be software elements, so one might be mis-lead into thinking a software architecture
is being presented when it is not. This has been re-written to clarify the point.

C-12

Paragraph 2.1.1.2
Were these key principles intended to be used in the development of the
subsequently presented architecture?
Response:
Yes, these key principles were used in the development of the architecture.
Paragraph 2.1.1.3

"Architecture analysis needs automated tools support.” Were automated tools used
in the architectural analysis (if any) of the proposed architecture? If so, which ones?
What was the output? If not, why is the paragraph there?
Response:
Computer aided systems engineering (CASE) tools were used in the development of
this architecture, as described in [WRA91]. They consisted of Excelerator/RTS and
Cadre Teamwork. The output consists of detailed functional flow and state
transition diagrams, of which simplified versions have been presented in this guide.
Paragraph 2.2.34.1

"crew interface to SGOAA." Surely the crew doesn't need to interface with the
architecture?

Response:
Agree. What the SGOAA must do is to provide the capability for crew interface to
the Avionics system. This paragraph has been modified to reflect this.

Paragraph 2.2.3.5

"No application to application interface is allowed.” I sensed a conflict with this
statement and what I understood from figures 2-2 and 2-9.

Response:

The sense of conflict probably arises from a lack of understanding as to the
distinctions between physical and logical interfaces. The only application to
application interface shown in the figures is a class 6 logical interface. This interface
allows for the passage of data from one application to another logically. The only
physical interface applications have is a class 5 interface to systems software. This
paragraph will be expanded to specifically define that " No application to application
physical interface is allowed".

C-13

Paragraph 2.2.3.6
“The SGOAA Model--". Example of my difficulty with terms. Also "The SGOAA
shall provide — sampling rate, data storage. —". Another example. An architecture
does not involve those things.

Response:
Agree. The architecture must provide the interfaces for the implementation of these
capabilities. Paragraphs 2.2.3.6, 2.2.3.7 and 2.2.3.8 will be modified to reflect this.

Paragraph 2.2.3.8
"the following." Something is missing.

Response:
Agree. The paragraph was rewritten to reflect that the standard interface consists of a
command and control interface, a payload data communications interface and a
payload event timing interface.

Paragraph 2.2.4.1.3
"SGOAA Model shall provide resources and interfaces —". Again, I think a clean
definition of terms will tidy this kind of thing up.

Response:
Rewritten to attain consistency of terms and update to revised definitions of critical
condition categories as defined in Table 2-1.

Paragraph 2.2.4.14
Perhaps the distinction intended between "configuration control” and "system
configuration control” should be spelled out.

Response:
"Configuration Control" reference was deleted. I know of no difference between
"configuration control” and "system configuration control”. The entire paragraph
was rewritten for clarity.

Paragraph 22.4.1.9
"without requiring shutdown of total SGOAA" - 2???

Response:

Rewritten to state: "The SGOAA shall support avionics hardware reintegration
(introduction of flight hardware previously removed from operation) without
requiring shutdown of the total avionics system"

C-14

Paragraph 2.2.4.2.6
reliability of the architecture model shall achieve a MTBF etc ??

Response:

Rewritten to state: " SGOAA compliant systems shall achieve the Mean Time
Between Critical Failure (MTBCF) and Mean Time Between Failure (MTBF) as listed
in Table 2-5."

Paragraph 2.3

I found this section very helpful reading. Will there be any identification of
common elements in the next version? I still have the sense of a collection of
autonomous subsystems; is that intended? JIAWG has a strategy to define
"functionally interchangeable and integrated avionics modules”, albeit for things
like weapon systems. They view the development of such systems as VHSIC-based
(in part, because of their self-test and diagnostics capabilities and the 50-70 percent
reduction in module count they expect from VHSIC circuits). Other technologies,
such as machine intelligence and multiuse sensors, are expect to contribute to the
implementation of a truly distributed architecture. Will your SGOAA support such
implementations adequately? I do not currently have the depth of knowledge to say.
You may want to study some of the JIJAWG reports on their Advanced Avionics to
determine if there is anything there for NASA to leverage.

Response:

1. The functional entities presented in section 3 for the Space Data System Services
and the Space Operations Control System are "common elements”.

2 The subsystems are not autonomous. Although each subsystem is a modular
element that may or may not be required for a specific system the subsystems
required for a specific application must communicate and support each other in
accomplishing the system purpose.

3. The SGOAA is a functional service and interface architecture, not a technology
based architecture. The SGOAA should be capable of being implemented in
essentially any technology base.

Figure 3-1

Consider making this into 3 charts: A Functional Overview with the 2 major types of

processing broken out into only the 11 boxes. Then add tables/figures for the

C-15

subsequent detail of these 11 boxes divided into Control Processing and Info
Processing (only 5 and 6 boxes detailed, respectively)

Response:

This figure is not, nor is it meant to be, a definitive list of all space processes. It
adequately conveys the information intended in its present form.

Paragraph 3.2
Europe's mandated hierarchical Object-oriented Design (HOOD) technique and
notation might help with the "hybrid" approach described here.

Response:
The HOOD technique and notation will be investigated to determine the utility of
use for this application.

Figure 3-2
I would suggest a redrawing of this which highlights (by position or elimination)

the only two of the 8 bubbles you intend to describe. Alternatively, you could just
illustrate the bubbles in the "normal mode” and have the text explain your focus.

Response:

The introduction to section 3.3 has been rewritten. Figure 3-2 has not been modified
because it is intended to distinguish all primary (or typical usage of "avionics”) from
other (support) avionics which are important to successful operation, such as the
data system or launch support elements. Only the support, core avionics are
addressed by this section, as noted in the re-written introduction.

Paragraph 4.2
The recommendation in section 3.4 should be recaptured here or it may get lost.
Response:

The recommendation has been captured.

C-16

o & sret
C.3 SAE COMMENTS

C.3.1 CTA INC COMMENTS

Feedback on the "SGOAA Standard Specification" as reviewed multiple times by CTA Inc,,
D. Cooper, 28 Jan. - 4 March 1993.

Comment 1.1:

Suggest reformatting the document outline to more closely follow the other DOD standards
such as MIL-STD-1553.

1. SCOPE
11 Scope
12 Application

2. REFERENCED DOCUMENTS
21 Standards

22 Other Documents

3. DEFINITIONS

4. GENERAL REQUIREMENTS
5. NOTES

Response:

Concur, the specification has been completely re-written to address this point and
related structural comments made by Dave Cooper.

Comment 1.2;

Suggest rewording the "Scope" section to make it clear as to what you are trying to
standardize. For example, the section should start with the words "This standard

C-17

establishes requirements for ..." It wasn't clear to me from reading the document in its

present form just how to fill in the blank.
Response:

Concur.
Comment 1.3:

Most sections of the document seem to provide more information on "why" something is
being suggested rather than specifying precisely "what" the requirements really are as they
would pertain to the system designer.

Response:

The why's have been deleted (because they are in the companion technical guide) or
where especially important to understanding, they have been moved to a new
NOTES section in the specification.

Comment 14:

Requirements should be stated in such a way that they are obviously testable. For example,
"Voltage on Pin A, connector P42, shall be between 4.5 to 5.5 VDC in the quiescent state.”
The majority of the requirements shown on pages 12-14 do not meet these criteria.

Response:

Agree, however, this is a generic specification intended to be tailored to specific
missions and systems, which are not (at this time) known. It is not clear how to
make specific quantitative requirements which are independent of specific missions
and which can be tailored during system development. Perhaps some kind of
formula might work here.

Comment 1.5;

The organization section of the document will not be necessary once the MIL-STD type
format is used.

Response:

Agree, it has been deleted.

C-18

Comment 1.6:

Definitions should be shortened to specify only what a particular word or phrase means in
the context of this document. Many of the current definitions seem to include application
guidance or statements of rationale or clarification that should not be in this section.

Response:

Agree, they have been made more specific.
Comment 1.7:

There are inconsistencies in several of the definitions. For instance your definition for
Application Platform comes right out of the POSIX P1003.0 definition section and contains a
reference to an "application” or "application software". In this context, I expected your
definition of "application” to also be consistent with POSIX. It is not. All definitions

should be reviewed for consistency.
Response:

Concur, all definitions based on POSIX have been changed for consistency where
needed and double checked against the P1003.0 document, and exceptions have been

specifically noted.
Comment 1.8:
Titles of referenced documents such as are shown in Table 3.2 need to be accurate. For
instance, MIL-STD-1553 is not an application handbook.
Response:
Agree, titles will be checked.
Comment 1.9:

The Architecture section needs to contain testable requirements. Listing six interface classes
and not giving specific implementation guidance is ineffective. It is, however, a good way
to breakdown the various types and levels of interface transactions that occur within a
system, and it does provide a way to compartmentalize a system design. But to make a
standard out of this document, a lot more detailed requirements need to be developed.

Response:

Agree that testable requirements are needed. However, as noted in response 1.4, this
is a generic specification intended to be tailored to specific missions and systems,
which are not (at this time) known. It is not clear how to make specific testable

C-19

requirements which are independent of specific missions and which can be tailored
during system development. More detailed work is needed; that is why NASA has
approached the SAE.

Comment 1.10;

The use of the term "physical interface” should be limited to describing mating surfaces
between physical devices such as connector halves. This usually includes such things as
connector type, shell size, pin insert arrangement, pin size, etc. Any other use of the term
physical interface would be non-standard.

Response:

The use of the term "physical interface” has been changed to resolve this confusion.
This term was being used in the sense of "direct interface”, and the term has been
changed to use the latter phrasing for clarity.

Comment 1.11:
I saw no rationale as to why this particular architecture was chosen to be your generic
"standard”. You are advocating a distributed processing environment with centralized

control. This may not be appropriate for every future NASA requirement, and, therefore
may be too restrictive.

Response:
There is no intention of restricting the architecture to centralized control. This is a
misunderstanding due to unclear figures. The figures have been re-done to clarify

that centralized or distributed processing and control are both acceptable to the
architecture.

Comment 1.12:

I would have expected to see a requirement for a vehicle health management system in an
architectural standard such as this. General guidance pertaining to the required levels of
fault detection, isolation, and reporting, timing requirements for fault detection and
reporting, required degraded operational capabilities, and redundancy requirements need to
be addressed.

Response:

Vehicle health management is only one service needed in this architecture. There
are others just as important (for instance an operating system). The specification has

been re-written to identify all the categories of services needed. Vehicle health
management is one service under the data system manager service.

Comment 2.0:

CONCLUSION:

The document presently reads more like a study report than a standard. There are some
good ideas presented concerning the interface classes, but the material needs to be presented
in the form of testable requirements to be levied on system designers. The more general
question is whether you want to try to standardize on a single architecture for all classes of
applications, or whether it would be better to try to standardize on interface definition
requirements and on certain functional requirements for fault isolation and reporting
requirements regardless of the selected architecture.

Response:

The re-written standard should no longer read like a study report. This was
originally done to provide the flavor of the POSIX documents. Agree (as noted
above) on the desirability of testable requirements. A single architecture seems
feasible if it is set up as the SGOAA is, that is with minimal constraints on actual
implementation except for key interfaces and key services. Fault isolation (as
important as it is) must not be allowed to outweigh other services just as important.

Comment 3.0:

RECOMMENDATIONS:

I would recommend that the following actions be taken before turning the document over
to the SAE for consideration as a standard.

Recommendation 1.

Reformat the document to comply with general instructions for preparation of

Government Standards.
Response:
Concur - has been done.

Recommendation 2.

Tailor the definitions contained in this document to this specific application.

C-21

Response:
Concur - has been done. .
Recommendation 3.

Phrase each of the requirements in the document so that a method of compliance testing is
implicit in the statement of the requirement.

Response:
Concur - have attempted to, but not clear how to implement this recommendation
in many cases.

Recommendation 4.

Fill in the missing words for "this standard establishes requirements for ... "

Response:
Concur.
Additional Comments On The SGOAA:
Comment 4:
Doesn't state a problem, therefore the "solution” can only be judged on a presumed and
arbitrary basis.
Response:

Do not agree, this is a standard for a solution, not a study of problems to be solved.

Comment 5:

Interpreting the "benefits" listed on page one seems to imply that the SGOAA is directed
toward standard interfaces, commonality, and modular interchangeability of software and
hardware. All of which are good and worthwhile when carefully weighed and tailored to
all the other specifics of a given mission problem. However, none of the benefits listed are
derived from the proposed “architecture”. Rather these benefits are only derived from a
comprehensive set of module standards that are by definition independent of the
architectural context.

Response:

The standard has been re-written to clarify the use of standard interfaces and
standard services with pre-defined interfaces. The purpose of these standards is to
provide standardized and common elements which would act as requirements to be

c-2

used in systems design just as mission requirements have to be used in systems
design. Thus these standard requirements would be tailored to specific mission and
system needs. Module standards would be just one of many lower level standards
needed in conjunction with this standard, since the SGOAA is intended to be an
umbrella standard.

Comment 6:

The paper provides no analysis or discussion of alternative architectures, nor any
justification for the one presented; hence, it would be pure conjecture to attempt, to
establish the soundness of the SGOAA chosen. More importantly the real purpose of the
SGOAA seems to be to help in the process of identifying an appropriate set of interfaces that
need to be addressed in order to ensure that all required module interface standards are

driven out.
Response:

Again, this is a specification for a solution to be used in tailoring to specific mission
and system needs. No alternatives were discussed because they are not relevant.
Standard interfaces and standard services are the key requirements established in the
SGOAA. Module interfaces (for both hardware and software) are only one kind of
interface being identified as needing to be standardized.

Comment 7;

The standard totally overlooks the many critical interfaces in the power, thermal, structural,
electrical shielding/grounding, etc. areas.

Response:

No, it does not overlook such critical interfaces. These are all physical interfaces
within the Class 1 interface. They would be defined in lower level standards pointed
to by the SGOAA parent standard.

SUGGESTIONS:
Recommendation 5:

The present title of this paper implies that a standard architecture is being proposed when
that is not only not necessary for the stated benefits but is actually not desirable. With
standard modules as building blocks all of the proposed benefits can be achieved without
limiting the architecture in any way. To limit the avionics architecture to a "standard”

would remove the most powerful tool the system designer has, namely: the ability to match
the system architecture to the problem "architecture”.

Response:

This is a misunderstanding of the usage of the phrase "architecture”. In the SGOAA,
we are using architecture to mean the overall structure and organization of software,
hardware and interfaces (both internal and external) needed to make a system
operate. Agree that standard modules are needed, but they have to be carefully
identified and their interfaces clearly defined. That is the purpose of SGOAA — to
identify the key interfaces and services needed in a standard approach. Not to specify
that one centralized or another distributed processing architecture is the best one.
There is no undue limitation on designers — they are only constrained from re-
inventing the "wheel" just because they want their own wheel and not someone
else's wheel.

Recommendation 6:

Consideration needs to be given to all the neglected interface areas mentioned above since
these are at least of equal significance for space applications and may in fact be much more
difficult to establish since they are unique and have no commercial counterparts.
Response:

Agree, no interfaces should be neglected. We believe the SGOAA does not neglect
any interfaces.

C-24

™
(~

APPENDIX D
LIST OF REFERENCES

D. LIST OF REFERENCES

[BOE91] Flanagan, Rich and Van Ausdal, Art, "SATWG Flight Data System Architecture
Specification Outline” briefing, 25 October 1991

[GDY0A] General Dynamics "Space Avionics Requirements Study”, 21 October 1990 as
briefed to the SATWG

[ISO7498] "Information Processing Systems - Open Systems Interconnection - Basic
Reference Model", International Standards Organization, 1984.

[JSC 31000] Space Station Projects Description and Requirements Document, Vol 3, Rev
G, 4 April 1991.

[POSIX91] "Draft Guide to the POSIX Open Systems Environment", P1003.0/D14, IEEE
Computer Society, November 1991.

[PRU0] Pruett, D., "Avionics Software Open System Environment Reference Model",
JSC, March 1990.

[WRA91] Wray, R.B., "Requirements Analysis Notebook for the Flight Data Systems
Definition in the Real-time Systems Engineering Laboratory (RSEL)," Job Order
60-430 for the JSC, NASA-CR-185698, LESC-29702, December 1991.

[WRA93] Wray, R.B. and Stovall, J.R., "Space Generic Open Avionics Architecture

(SGOAA) Reference Model Standard Specification”, Job Order 60-430, Contract
NAS 9-17900 for the JSC, NASA-CR-188245, LESC-30354-A, March 1993.

D1

DISTRIBUTION LIST FOR LESC-30347-A
SPACE GENERIC OPEN AVIONICS ARCHITECTURE
(SGOAA) STANDARD

NASA
EK111/D. M. PRUETT (5) EG1/D. P. BROWN
PT4/E. M. FRIDGE (5) EG111/K. J. COX
AMES/E. S. CHEVERS (10) JPL/MS 301-235/A. HOOKE
JM-2/8 McDONALD {12) IA13/D. STONE

LESC
C18/J. R. THRASHER C18/G. L. CLOUETTE
C18/E. A. STREET C18/R. W. WRAY (10)
C18/R. E. SCHINDELER C18/M. W. WALRATH
C18/G. Y. ROSET C18/B. L. DOECKEL
C18/J. STOVALL (10) B11/G. J. MOORMAN
C106/P. G. O'NEIL C83/S. J.THOMAS
CO7/J. E. MOORE C22/D. CRAVEY

C29/P. HOPKINS
C87/M. W. BRADWAY
(FOR SATWG)

C18/JEAN FOWLER B16/LESC LIBRARY (2)
(MASTER + 2 COPIES)

SAE/ASD, SAE INTERNATIONAL, 400 COMMONWEALTH AVE, WARRENDALE,
PA. 15096

BARBARA ROTH (FILE)

JOHN MEYER

MITRE, 1120 NASA ROAD 1, HOUSTON, TX 77058
D.ERB

UHCL, UNIVERSITY OF HOUSTON - CLEAR LAKE, 2700 AY AREA BLVE. -
BOX 444, HOUSTON, TEXAS 77058
CHARLES HARDWICH

NIST/CSL, FRITZ SCHULTZ, BLDG 225, ROOM B266, GATHISBURG, MD. 20899

ROME LABS/OCTS, GRIFFIS AFB, NY 13441-5700
RICHARD WOOD

DISTRIBUTION LIST FOR LESC-30347-A
SGOAA STANDARD - CONTINUED

LASC, 86 S. COBB ST.,MARRIETTA, GA. 30063
RICK HARWELL, D/73-D2, ZONE 0685

JOHN WEAVER, D/73-D1, ZONE 0685

COX, JIM, D/73-MA ZONE 0081

REED, MIKE, D/73-MA, ZONE 0081

HUDSON, ROCKY, D/73-D2, ZONE 0685

LMSC, 1111 LOCKHEED WAY, SUNNYVALE, CA. 94088-3504
CHARLES TADJERAN, ORG. 62-31, BLDG 150

ROY PETIS, ORG. 78-10, BLDG 264

JOHN McMORRIS, ORG. 81-90, BLDG 157

DUWAYNE DICKSON, ORG. 80-06, BLDG 154

F. L. (FRED) LORY, ORG. 68-15, BLDG 104

MERLIN DORFMAN, ORG. 62-80, BLDG 563

LMSC (RD&D), 3251 HANOVER STREET, PALO ALTO, CA 94303-1191
BILL GUYTON, ORG. 92-20, BLDG 254E

RAY MUZZY, ORG. 90-21, BLDG. 254E

STEVE SHERMAN, ORG. 96-10, BLDG 254E

LOCKHEED-SANDERS. 95 CANAL ST. NASHUA, NH 03061
RAY GARBOS (NAMSD-5002) JEFF E. SMITH (PTP2-B002)
JOHN MILLER (NCA 09-1106) DUNCAN MOORE (MER 24)

P. O. BOX 250, SUNLAND, CA. 91041
ALEX LOEWENTHAL, DEPT. 25-14, BLDG 311

LAD, P. O. BOX 17100, AUSTIN, TX. 78744-1016
CURTIS WELLS, ORG. T2-10, BLDG 30F

LOCKHEED CORP, 4500 PARK GRANADA BLVD, CALABASIS, CA 91399-0310
MICHAEL CARROLL
BART KRAWETZ

LAS Ontario, P. O. BOX 33, ONTARIO, CA. 91761-0033
C. R. (BOB) FENTON

LEWC, P. 0. BOX 748, FORT WORTH, TX 76101
PAUL DANIEL, MAIL ZONE 2640

LSOC, 1100 LOCKHEED WAY, TITUSVILLE, FL 32780
L. J. (LEWIS) BOYD, ORG. 32-40, (Z/LSO-183)
ARTHUR EDWARDS, ORG. 11-42, BLDG. B/DX-D, Z/LSO-284)

DISTRIBUTION LIST FOR LESC-30347-A
SGOAA STANDARD - CONTINUED

BOEING CORP, PO BOX 3999, SEATTLE, WA 98124-2499
RICHARD FLANAGAN
AL COSGROVE

COMPUTING DEVICES INTL, 8800 QUEEN AVENUE SOUTH, BLOOMINGTON,
MN 55431

JIM JAMES, M/S BLCN2A

DOCK ALLEN

WESTAR CORP, 6808 ACADEMY PKWY EAST, NE, BLDG C, SUITE 3,
ALBUQUERQUE, NM 87109
CHRIS DE LONG

HG USAF/SCS, 1250 AIR FORCE, PENTAGON, WASHINGTON, D. C. 20330-1250
COL ROBERT HANLON

ROCKWELL INT'L CORP., 12214 LAKEWOOD BLVD., DOWNEY, CA. 90241
SUMI MATSURA

TRW, HOUSTON, TX 77058
DOUG RUE (NASA MAIL)

FAIRCHILD SPACE, 20301 CENTURY BLVD., GERMANTOWN, MD. 20874
JOHN SCHNEIDER, FLIGHT DATA SYSTEMS

E-SYSTEMS, P. O. BOX 12248, ST. PETERSBURG, FL. 33733-2248
JIM BRADY/MS29

EER SYSTEMS INC., 3027 MARINA BAY DR., SUITE 105,
LEAGUE CITY, TX 77573
RAY HARTENSTEIN

- 6633 CANOGA AVE, P. O. BOX
7922, CANOGA PARK, CA. 91309-7922
ANTHONY THOMPSON, D1055-LB33

RESEARCH ANALYSIS AND MAINTENANCE INC., 512 AUDUBON ST.,
LEAGUE CITY, TX 77573

ROGER EVANS

M&AE, 1200 G. STREET, NW, SUITE 800, WASHINGTON DC, 20005
JOHN KELLER

DISTRIBUTION LIST FOR LESC-30347-A
SGOAA STANDARD - CONCLUDED

C.S. DRAPER LABS, 555 TECHNOLOGY SQUARE, CAMBRIDGE, MA 02139
J. BARTON DEWOLFE/MS 61

SBS ENGINEERING, 5550 MIDWAY PARK PLACE, NE, ALBUQUERQUE, NM
87109
MR. DEREK HEAD

VM IEN 65 WEST STREET, SUITE C200,
WARMINSTER, PA 18974
MR. DOUG D'AVINO

MR. MARTIN FREED, (ASC/ENASC), 5565 BARBANNA LANE, DAYTON, OH
45415

, WRIGHT-PATTERSON AFB, OH 45433
MR. BYRON STEPHENS

NAVAL AIR WARFARE CENTER, AIRCRAFT DIVISION, WARMINSTER, PA
18974-0591

RICHARD J. PARISEAU/CODE 102A

RICHARD S. MEJZAK/CODE 2021

TEXAS INSTRUMENTS, 6550 CHASE OAKS BLVD, PO BOX 869305, PLANO, TX
75086
DR. CHUCK ROARK/MS 8481

HONEYWELL INC, 3660 TECHNOLOGY DR, MINNEAPOLIS, MN 55418
MR RON FRAZZINI

PARAMAX SYSTEMS CORP, PO BOX 64525, ST PAUL, MN 55164-0525
MR DARYLE HAMLIN/MS U1F15

SUITE 310, 18333 EGRET BAY BLVD, HOUSTON, TX 77058
MR DAVID COOPER

MITRE ION, 202 BURLINGTON ROAD, BEDFORD, MA 01730-1420
WILLIAM T. BRANDOM/D-96
JACK SHAY/DIRECTOR OF SYSTEMS DEVELOPMENT

MR ED SMITH, EXECUTIVE VICE PRESIDENT, NCOSE,
1907 BELLMEADE, HOUSTON, TX 77019

